ﻻ يوجد ملخص باللغة العربية
We present a detailed temperature and frequency dependence of the optical conductivity measured on clean high quality single crystals of URu$_{2}$Si$_{2}$ of $ac$- and $ab$-plane surfaces. Our data demonstrate the itinerant character of the narrow 5f bands, becoming progressively coherent as temperature is lowered below a cross-over temperature $T^*{sim}75~K$. $T^*$ is higher than in previous reports as a result of a different sample preparation, which minimizes residual strain. We furthermore present the density-response (energy-loss) function of this compound, and determine the energies of the heavy fermion plasmons with $a$-and $c$-axis polarization. Our observation of a suppression of optical conductivity below 50~meV both along $a$ and $c$-axis, along with a heavy fermion plasmon at 18~meV, points toward the emergence of a band of coherent charge carriers crossing the Fermi energy and the emergence of a hybridization gap on part of the Fermi surface. The evolution towards coherent itinerant states is accelerated below the hidden order temperature $T_{HO}=17.5$~K. In the hidden order phase the low frequency optical conductivity shows a single gap at $sim 6.5$meV, which closes at $T_{HO}$.
In matter, any spontaneous symmetry breaking induces a phase transition characterized by an order parameter, such as the magnetization vector in ferromagnets, or a macroscopic many-electron wave-function in superconductors. Phase transitions with unk
Electrical resistivity measurements were performed on single crystals of URu$_2-x$Os$_x$Si$_2$ up to $x$ = 0.28 under hydrostatic pressure up to $P$ = 2 GPa. As the Os concentration, $x$ , is increased, (1) the lattice expands, creating an effective
We measured the polarized optical conductivity of URu$_2$Si$_2$ from room temperature down to 5 K, covering the Kondo state, the coherent Kondo liquid regime, and the hidden-order phase. The normal state is characterized by an anisotropic behavior be
The observation of Ising quasiparticles is a signatory feature of the hidden order phase of URu$_2$Si$_2$. In this paper we discuss its nature and the strong constraints it places on current theories of the hidden order. In the hastatic theory such a
A second-order phase transition is associated with emergence of an order parameter and a spontaneous symmetry breaking. For the heavy fermion superconductor URu$_2$Si$_2$, the symmetry of the order parameter associated with its ordered phase below 17