ترغب بنشر مسار تعليمي؟ اضغط هنا

A possible long-term activity cycle for {iota} Horologii: First results from the HK{alpha} & SPI-HK{alpha} projects

41   0   0.0 ( 0 )
 نشر من قبل Mat\\'ias Flores
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To detect stellar activity cycles and study the possible star-planet interactions (SPIs), we have developed both HK$alpha$ and SPI-HK$alpha$ projects since 1999 and 2012 respectively. In this work, we present preliminary results of possible SPIs studying the chromospheric activity and look for possible correlations between stellar activity and stellar/planetary parameters. We find that for stars with similar T$_{eff}$, stellar activity increases with the mass of the planet, similar to previous works. However, stellar ages can also play a role and a larger stellar sample is needed to verify these trends. We also note that some of these stars present a remarkably high level of chromospheric activity, even comparable with RSCvn or BY Dra active stars. In addition, we do not observe any correlation between stellar activity and semi-major axis. We present the first long-term activity study of the star $iota$ Horologii, a young solar-type star which hosts a non-transiting Jovian planet and presents a high activity level. We analyze our own spectra, obtained between 2002 and 2015, combined with public HARPS observations. We calculate the Ca II indexes derived from the 987 CASLEO and HARPS spectra and convert them to the Mount-Wilson scale. We found a long-term activity cycle of $sim$ 5 years which fits the active sequence of Bohm-Vitense. The amplitude of this longer cycle is irregular, as was also observed for the shorter one. This fact could be attributed to an antisymmetric distribution of active regions on the stellar surface.

قيم البحث

اقرأ أيضاً

83 - A. Calamida , G. Bono , C. Corsi 2011
We present a new theoretical calibration of the Stroemgren metallicity index hk by using alpha-enhanced evolutionary models transformed into the observational plane by using atmosphere models with the same chemical mixture. We apply the new Metallici ty--Index--Color (MIC) relations to a sample of 85 field red giants (RGs) and find that the difference between photometric estimates and spectroscopic measurements is on average smaller than 0.1 dex with a dispersion of sigma = 0.19 dex. The outcome is the same if we apply the MIC relations to a sample of eight RGs in the bulge globular cluster NGC6522, but the standard deviation ranges from 0.26 (hk, v-y) to 0.49 (hk, u-y). The difference is mainly caused by a difference in photometric accuracy. The new MIC relations based on the (Ca-y) color provide metallicities systematically more metal-rich than the spectroscopic ones. We found that the Ca-band is affected by Ca abundance and possibly by chromospheric activity.
The search for Earth-like planets around late-type stars using ultra-stable spectrographs requires a very precise characterization of the stellar activity and the magnetic cycle of the star, since these phenomena induce radial velocity (RV) signals t hat can be misinterpreted as planetary signals. Among the nearby stars, we have selected Barnards Star (Gl 699) to carry out a characterization of these phenomena using a set of spectroscopic data that covers about 14.5 years and comes from seven different spectrographs: HARPS, HARPS-N, CARMENES, HIRES, UVES, APF, and PFS; and a set of photometric data that covers about 15.1 years and comes from four different photometric sources: ASAS, FCAPT-RCT, AAVSO, and SNO. We have measured different chromospheric activity indicators (H$alpha$, Ca~{sc II}~HK and Na I D), as well as the FWHM of the cross-correlation function computed for a sub-set of the spectroscopic data. The analysis of Generalized Lomb-Scargle periodograms of the time series of different activity indicators reveals that the rotation period of the star is 145 $pm$ 15 days, consistent with the expected rotation period according to the low activity level of the star and previous claims. The upper limit of the predicted activity-induced RV signal corresponding to this rotation period is about 1 m/s. We also find evidence of a long-term cycle of 10 $pm$ 2 years that is consistent with previous estimates of magnetic cycles from photometric time series in other M stars of similar activity levels. The available photometric data of the star also support the detection of both the long-term and the rotation signals.
We present a high-precision chemical analysis of iota Horologii, a planet-host field star thought to have formed in the Hyades. Elements with atomic number 6<=Z<=30 have abundances that are in excellent agreement with those of the cluster within the +/-0.01 dex (or ~2%) precision errors. Heavier elements show a range of abundances such that about half of the Z>30 species analyzed are consistent with those of the Hyades, while the other half are marginally enhanced by 0.03+/-0.01 dex (~7+/-2%). The lithium abundance, A(Li), is very low compared to the well-defined A(Li)-Teff relation of the cluster. For its Teff, iota Horologiis lithium content is about half the Hyades. Attributing the enhanced lithium depletion to the planet would require a peculiar rotation rate, which we are unable to confirm. Our analysis of the stars chromospheric activity suggests Prot=5d, which is significantly shorter than previously reported. Models of Galactic orbits place iota Horologii hundreds of parsecs away from the Hyades cluster at formation. Thus, we find the claim of a shared birthplace very difficult to justify.
Recently, new debates about the role of layers of strong shear have emerged in stellar dynamo theory. Further information on the long-term magnetic activity of fully convective stars could help determine whether their underlying dynamo could sustain activity cycles similar to the solar one. We performed a thorough study of the short- and long-term magnetic activity of the young active dM4 star Gl 729. First, we analyzed long-cadence $K2$ photometry to characterize its transient events (e.g., flares) and global and surface differential rotation. Then, from the Mount Wilson $S$-indexes derived from CASLEO spectra and other public observations, we analyzed its long-term activity between 1998 and 2020 with four different time-domain techniques to detect cyclic patterns. Finally, we explored the chromospheric activity at different heights with simultaneous measurements of the H$alpha$ and the Na I D indexes, and we analyzed their relations with the $S$-Index. We found that the cumulative flare frequency follows a power-law distribution with slope $sim- 0.73$ for the range $10^{32}$ to $10^{34}$ erg. We obtained $P_{rot} = (2.848 pm 0.001)$ days, and we found no evidence of differential rotation. We also found that this young active star presents a long-term activity cycle with a length of $text{about four}$ years; there is less significant evidence of a shorter cycle of $0.8$ year. The star also shows a broad activity minimum between 1998 and 2004. We found a correlation between the S index, on the one hand, and the H$alpha$ the Na I D indexes, on the other hand, although the saturation level of these last two indexes is not observed in the Ca lines. Because the maximum-entropy spot model does not reflect migration between active longitudes, this activity cycle cannot be explained by a solar-type dynamo. It is probably caused by an $alpha^2$-dynamo.
We investigate the homology of ample Hausdorff groupoids. We establish that a number of notions of equivalence of groupoids appearing in the literature coincide for ample Hausdorff groupoids, and deduce that they all preserve groupoid homology. We co mpute the homology of a Deaconu{Renault groupoid associated to k pairwisecommuting local homeomorphisms of a zero-dimensional space, and show that Matuis HK conjecture holds for such a groupoid when k is one or two. We specialise to k-graph groupoids, and show that their homology can be computed in terms of the adjacency matrices, using a chain complex developed by Evans. We show that Matuis HK conjecture holds for the groupoids of single vertex k-graphs which satisfy a mild joint-coprimality condition. We also prove that there is a natural homomorphism from the categorical homology of a k-graph to the homology of its groupoid.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا