ترغب بنشر مسار تعليمي؟ اضغط هنا

On a new theoretical calibration of the Stroemgren hk metallicity index: NGC6522 as a first test case

126   0   0.0 ( 0 )
 نشر من قبل Annalisa Calamida Dr.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new theoretical calibration of the Stroemgren metallicity index hk by using alpha-enhanced evolutionary models transformed into the observational plane by using atmosphere models with the same chemical mixture. We apply the new Metallicity--Index--Color (MIC) relations to a sample of 85 field red giants (RGs) and find that the difference between photometric estimates and spectroscopic measurements is on average smaller than 0.1 dex with a dispersion of sigma = 0.19 dex. The outcome is the same if we apply the MIC relations to a sample of eight RGs in the bulge globular cluster NGC6522, but the standard deviation ranges from 0.26 (hk, v-y) to 0.49 (hk, u-y). The difference is mainly caused by a difference in photometric accuracy. The new MIC relations based on the (Ca-y) color provide metallicities systematically more metal-rich than the spectroscopic ones. We found that the Ca-band is affected by Ca abundance and possibly by chromospheric activity.



قيم البحث

اقرأ أيضاً

120 - G. Bono 2009
We present a new method to estimate the absolute ages of stellar systems. This method is based on the difference in magnitude between the main sequence turn-off (MSTO) and a well defined knee located along the lower main sequence (MSK). This feature is caused by the collisionally induced absorption of molecular hydrogen and it can be easily identified in near-infrared (NIR) and in optical-NIR color-magnitude diagrams of stellar systems. We took advantage of deep and accurate NIR images collected with the Multi-Conjugate Adaptive Optics Demonstrator temporarily available on the Very Large Telescope and of optical images collected with the Advanced Camera for Surveys Wide Field Camera on the Hubble Space Telescope and with ground-based telescopes to estimate the absolute age of the globular NGC3201 using both the MSTO and the Delta(MSTO-MSK). We have adopted a new set of cluster isochrones and we found that the absolute ages based on the two methods agree to within one sigma. However, the errors of the ages based on the Delta(MSTO-MSK) method are potentially more than a factor of two smaller, since they are not affected by uncertainties in cluster distance or reddening.Current isochrones appear to predict slightly bluer (~0.05mag) NIR and optical-NIR colors than observed for magnitudes fainter than the MSK.
138 - A. Calamida 2007
We present a new calibration of the Stroemgren metallicity index m1 using red giant (RG) stars in 4 globular clusters (GCs:M92,M13,NGC1851,47Tuc) with metallicity ranging from [Fe/H]=-2.2 to -0.7, marginally affected by reddening (E(B-V)<0.04) and wi th accurate u,v,b,y photometry.The main difference between the new metallicity-index-color (MIC) relations and similar relations available in the literature is that we adopted the u-y/v-y colors instead of the b-y.These colors present a stronger sensitivity to effective temperature, and the MIC relations show a linear slope. The difference between photometric estimates and spectroscopic measurements for RGs in M71,NGC288,NGC362,NGC6397, and NGC6752 is 0.04+/-0.03dex (sigma=0.11dex). We also apply the MIC relations to 85 field RGs with metallicity raning from [Fe/H]=-2.4 to -0.5 and accurate reddening estimates. We find that the difference between photometric estimates and spectroscopic measurements is-0.14+/-0.01dex (sig=0.17dex). We also provide two sets of MIC relations based on evolutionary models that have been transformed into the observational plane by adopting either semi-empirical or theoretical color-temperature relations. We apply the semi-empirical relations to the 9 GCs and find that the difference between photometric and spectroscopic metallicities is 0.04+/-0.03dex (sig=0.10dex).A similar agreement is found for the sample of field RGs, with a difference of -0.09+/-0.03dex (sig=0.19dex).The difference between metallicity estimates based on theoretical relations and spectroscopic measurements is -0.11+/-0.03dex (sig=0.14dex) for the 9 GGCs and -0.24+/-0.03dex (sig=0.15dex) for the field RGs. Current evidence indicates that new MIC relations provide metallicities with an intrinsic accuracy better than 0.2dex.
60 - A. Calamida , G. Bono 2007
We adopted uvby Stroemgren photometry to investigate the metallicity distribution of Omega Cen Red Giant (RG) stars. We provided a new empirical calibration of the Stroemgren m1 = (v-b)-(b-y) metallicity index based on cluster stars. The new calibrat ion has been applied to a sample of Omega Cen RGs. The shape of the estimated metallicity distribution is clearly asymmetric, with a sharp cut-off at low metallicities ([Fe/H] < -2.0) and a metal-rich tail up to [Fe/H] ~ 0.0. Two main metallicity peaks have been identified, around [Fe/H] ~ -1.9 and -1.3 dex, and a metal-rich shoulder at ~ 0.2 dex.
209 - A. Calamida , G. Bono 2007
We performed a new calibration of the Stroemgren metallicity index m1 based on the b-y color of cluster red giant stars. The current Metallicity-Index-Color relation is not linear in the color range 0.40 < b-y < 1.0, but provides iron abundances of c luster and field red giants with an accuracy of ~ 0.25 dex.
We derive a new relation between the metallicity of Seyfert 2 Active Galactic Nuclei (AGNs) and the intensity of the narrow emission-lines ratio $N2O2$=log([N II]$lambda$6584/[O II]$lambda$3727). The calibration of this relation was performed determi ning the metallicity ($Z$) of a sample of 58 AGNs through a diagram containing the observational data and the results of a grid of photoionization models obtained with the Cloudy code. We find the new $Z/Z_odot$-$N2O2$ relation using the obtained metallicity values and the corresponding observational emission line intensities for each object of the sample. Estimations derived through the use of this new calibration indicate that narrow line regions of Seyfert 2 galaxies exhibit a large range of metallicities ($0.3 : < : Z/Z_{odot} : < :2.0$), with a median value $Z approx Z_{odot}$. Regarding the possible existence of correlations between the luminosity $L(rm Hbeta$), the electron density, and the color excess E(B$-$V) with the metallicity in this kind of objects, we do not find correlations between them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا