ترغب بنشر مسار تعليمي؟ اضغط هنا

Trace and Stable Failures Semantics for CSP-Agda

100   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

CSP-Agda is a library, which formalises the process algebra CSP in the interactive theorem prover Agda using coinductive data types. In CSP-Agda, CSP processes are in monadic form, which sup- ports a modular development of processes. In this paper, we implement two main models of CSP, trace and stable failures semantics, in CSP-Agda, and define the corresponding refinement and equal- ity relations. Because of the monadic setting, some adjustments need to be made. As an example, we prove commutativity of the external choice operator w.r.t. the trace semantics in CSP-Agda, and that refinement w.r.t. stable failures semantics is a partial order. All proofs and definitions have been type checked in Agda. Further proofs of algebraic laws will be available in the CSP-Agda repository.



قيم البحث

اقرأ أيضاً

165 - Salvador Tamarit 2017
Obtaining good performance when programming heterogeneous computing platforms poses significant challenges. We present a program transformation environment, implemented in Haskell, where architecture-agnostic scientific C code with semantic annotatio ns is transformed into functionally equivalent code better suited for a given platform. The transformation steps are represented as rules that can be fired when certain syntactic and semantic conditions are fulfilled. These rules are not hard-wired into the rewriting engine: they are written in a C-like language and are automatically processed and incorporated into the rewriting engine. That makes it possible for end-users to add their own rules or to provide sets of rules that are adapted to certain specific domains or purposes.
We introduce a new application for inductive logic programming: learning the semantics of programming languages from example evaluations. In this short paper, we explored a simplified task in this domain using the Metagol meta-interpretive learning s ystem. We highlighted the challenging aspects of this scenario, including abstracting over function symbols, nonterminating examples, and learning non-observed predicates, and proposed extensions to Metagol helpful for overcoming these challenges, which may prove useful in other domains.
147 - Azer Bestavros 2011
We define a domain-specific language (DSL) to inductively assemble flow networks from small networks or modules to produce arbitrarily large ones, with interchangeable functionally-equivalent parts. Our small networks or modules are small only as the building blocks in this inductive definition (there is no limit on their size). Associated with our DSL is a type theory, a system of formal annotations to express desirable properties of flow networks together with rules that enforce them as invariants across their interfaces, i.e, the rules guarantee the properties are preserved as we build larger networks from smaller ones. A prerequisite for a type theory is a formal semantics, i.e, a rigorous definition of the entities that qualify as feasible flows through the networks, possibly restricted to satisfy additional efficiency or safety requirements. This can be carried out in one of two ways, as a denotational semantics or as an operational (or reduction) semantics; we choose the first in preference to the second, partly to avoid exponential-growth rewriting in the operational approach. We set up a typing system and prove its soundness for our DSL.
This volume contains the proceedings of ICE 2013, the 6th Interaction and Concurrency Experience workshop, which was held in Florence, Italy on the 6th of June 2013 as a satellite event of DisCoTec 2013. The ICE procedure for paper selection allows P C members to interact, anonymously, with authors. During the review phase, each submitted paper is published on a Wiki and associated with a discussion forum whose access is restricted to the authors and to all the PC members not declaring a conflict of interests. The PC members post comments and questions that the authors reply to. Each paper was reviewed by three PC members, and altogether 6 papers were accepted for publication. We were proud to host two invited talks, Davide Sangiorgi and Filippo Bonchi, whose abstracts are included in this volume together with the regular papers. The workshop also featured a brief announcement of an already published paper.
176 - Sergio Antoy 2017
We investigate proving properties of Curry programs using Agda. First, we address the functional correctness of Curry functions that, apart from some syntactic and semantic differences, are in the intersection of the two languages. Second, we use Agd a to model non-deterministic functions with two distinct and competitive approaches incorporating the non-determinism. The first approach eliminates non-determinism by considering the set of all non-deterministic values produced by an application. The second approach encodes every non-deterministic choice that the application could perform. We consider our initial experiment a success. Although proving properties of programs is a notoriously difficult task, the functional logic paradigm does not seem to add any significant layer of difficulty or complexity to the task.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا