ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental demonstration of phase bistability in a broad area optical oscillator with injected signal

93   0   0.0 ( 0 )
 نشر من قبل Rub\\'en Mart\\'inez Lorente
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate experimentally that a broad area laser-like optical oscillator (a nondegenerate photorefractive oscillator) with structured injected signal displays two-phase patterns. The technique (G. J. de Valcarcel and K. Staliunas, Phys. Rev. Lett. (105), 054101 (2010)) consists in spatially modulating the injection, so that its phase alternates periodically between two opposite values, i.e. differing by pi



قيم البحث

اقرأ أيضاً

312 - Gaelle Keller 2008
We report the first experimental observation of bright EPR beams produced by a type-II optical parametric oscillator operating above threshold at frequency degeneracy. The degenerate operation is obtained by introducing a birefringent plate inside th e cavity resulting in phase locking. After filtering the pump noise, which plays a critical role, continuous-variable EPR correlations between the orthogonally polarized signal and idler beams are demonstrated.
200 - G.J. de Valcarcel , E. Roldan , 2008
We derive a simple model for a two transverse mode laser (that considers the TEM00 and TEM10 modes) in which an injected signal with the shape of the TEM10 mode but a frequency close to that of the TEM00 mode is injected.
We experimentally generate cylindrically polarized wavepackets with transverse orbital angular momentum, demonstrating the coexistence of spatiotemporal optical vortex with spatial polarization singularity. The results in this paper extend the study of spatiotemporal wavepackets to a broader scope, paving the way for its applications in various areas such as light-matter interaction, optical tweezers, spatiotemporal spin-orbit angular momentum coupling, etc.
Semiconductor lasers with coherent forcing are expected to behave similarly to simple neuron models in response to external perturbations, as long as the physics describing them can be approximated by that of an overdamped pendulum with fluid torque. Beyond the validity range of this approximation, more complex features can be expected. We perform experiments and numerical simulations which show that the system can display resonator and integrator features depending on parameters and that multiple pulses can be emitted in response to larger perturbations.
We show that the velocity and thus the frequency of a signal pulse can be adjusted by the use of a control Airy pulse. In particular, we utilize a nonlinear Airy pulse which, via cross-phase modulation, creates an effective potential for the optical signal. Interestingly, during the interaction, the signal dispersion is suppressed. Importantly, the whole process is controllable and by using Airy pulses with different truncations leads to predetermined values of the frequency shifting. Such a functionality might be useful in wavelength division multiplexing networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا