ﻻ يوجد ملخص باللغة العربية
Social behaviors involving the interaction of multiple individuals are complex and frequently crucial for an animals survival. These interactions, ranging across sensory modalities, length scales, and time scales, are often subtle and difficult to quantify. Contextual effects on the frequency of behaviors become even more difficult to quantify when physical interaction between animals interferes with conventional data analysis, e.g. due to visual occlusion. We introduce a method for quantifying behavior in courting fruit flies that combines high-throughput video acquisition and tracking of individuals with recent unsupervised methods for capturing an animals entire behavioral repertoire. We find behavioral differences in paired and solitary flies of both sexes, identifying specific behaviors that are affected by social and spatial context. Our pipeline allows for a comprehensive description of the interaction between multiple individuals using unsupervised machine learning methods, and will be used to answer questions about the depth of complexity and variance in fruit fly courtship.
We investigate the role of the noise in the mating behavior between individuals of Nezara viridula (L.), by analyzing the temporal and spectral features of the non-pulsed type female calling song emitted by single individuals. We have measured the th
The term In Silico Trial indicates the use of computer modelling and simulation to evaluate the safety and efficacy of a medical product, whether a drug, a medical device, a diagnostic product or an advanced therapy medicinal product. Predictive mode
Genetic and environmental factors are traditionally seen as the sole causes of congenital anomalies. In this paper we introduce a third possible cause, namely random manufacturing discrepancies with respect to ``design values. A clear way to demonstr
Six thermo-activated transient receptor potential (TRP) channels are the molecular basis of the thermosensation for mammals. But the molecular source of their gating remains unknown. In the Letter, we suggest a physically based model for the TRP chan
The temperature effect on the cardiac ryanodine receptor (RyR) function has been studied within the electron-conformational (EC) model. It is shown that simple EC model with the Arrhenius like temperature dependence of internal and external frictions