ﻻ يوجد ملخص باللغة العربية
The temperature effect on the cardiac ryanodine receptor (RyR) function has been studied within the electron-conformational (EC) model. It is shown that simple EC model with the Arrhenius like temperature dependence of internal and external frictions and a specific thermosensitivity of the tunnelling open - close transitions can provide both qualitative and quantitative description of the temperature effects for isolated RyRs. The potential of the model was illustrated by explaining the experimental data on the temperature dependence of sheeps isolated cardiac RyR gating and conductance (R. Sitsapesan et al., J Physiol 434, 469 (1991)).
We propose four novel mathematical models, describing the microscopic mechanisms of force generation in the cardiac muscle tissue, which are suitable for multiscale numerical simulations of cardiac electromechanics. Such models are based on a biophys
The batch fermentation process, inoculated by pulsed electric field (PEF) treated wine yeasts (S. cerevisiae Actiflore F33), was studied. PEF treatment was applied to the aqueous yeast suspensions (0.12 % wt.) at the electric field strengths of E=100
Biological cells sense external chemical stimuli in their environment using cell-surface receptors. To increase the sensitivity of sensing, receptors often cluster, most noticeably in bacterial chemotaxis, a paradigm for signaling and sensing in gene
Complex spatiotemporal patterns of action potential duration have been shown to occur in many mammalian hearts due to a period-doubling bifurcation that develops with increasing frequency of stimulation. Here, through high-resolution optical mapping
We study kinetic model of Nuclear Receptor Binding to Promoter Regions. This model is written as a system of ordinary differential equations. Model reduction techniques have been used to simplify chemical kinetics.In this case study, the technique of