ﻻ يوجد ملخص باللغة العربية
We propose a new experiment to measure the running of the fine-structure constant in the space-like region by scattering high-energy muons on atomic electrons of a low-Z target through the process $mu e to mu e$. The differential cross section of this process, measured as a function of the squared momentum transfer $t=q^2<0$, provides direct sensitivity to the leading-order hadronic contribution to the muon anomaly $a^{rm{HLO}}_{mu}$. By using a muon beam of 150 GeV, with an average rate of $sim1.3times 10^7$ muon/s, currently available at the CERN North Area, a statistical uncertainty of $sim 0.3%$ can be achieved on $a^{rm{HLO}}_{mu}$ after two years of data taking. This direct measurement of $a^{rm{HLO}}_{mu}$ will provide an independent determination, competitive with the time-like dispersive approach, and consolidate the theoretical prediction for the muon $g$-2 in the Standard Model. It will allow therefore a firmer interpretation of the measurements of the future muon $g$-2 experiments at Fermilab and J-PARC.
The leading order hadronic contribution to the muon magnetic moment anomaly, $a^{HAD}_mu$, is determined entirely in the framework of QCD. The result in the light-quark sector, in units of $10^{-10}$, is $a^{HAD}_mu|_{uds} =686 pm 26$, and in the hea
We briefly review several activities at Mainz related to hadronic light-by-light scattering (HLbL) using lattice QCD. First we present a position-space approach to the HLbL contribution in the muon g-2, where we focus on exploratory studies of the pi
The evaluation of the hadronic contribution to the muon magnetic anomaly $a_mu$ is revisited, taking advantage of new experimental data on $e^+e^-$ annihilation into hadrons: SND and CMD-2 for the $pi^+pi^-$ channel, and babar for multihadron final s
The persistent discrepancy of about 3.5 standard deviations between the experimental measurement and the Standard Model prediction for the muon anomalous magnetic moment, $a_mu$, is one of the most promising hints for the possible existence of new ph
We review recent developments concerning the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon. We first discuss why fully off-shell hadronic form factors should be used for the evaluation of this contributi