ﻻ يوجد ملخص باللغة العربية
We briefly review several activities at Mainz related to hadronic light-by-light scattering (HLbL) using lattice QCD. First we present a position-space approach to the HLbL contribution in the muon g-2, where we focus on exploratory studies of the pion-pole contribution in a simple model and the lepton loop in QED in the continuum and in infinite volume. The second part describes a lattice calculation of the double-virtual pion transition form factor F_{pi^0 gamma^* gamma^*}(q_1^2, q_2^2) in the spacelike region with photon virtualities up to 1.5 GeV^2 which paves the way for a lattice calculation of the pion-pole contribution to HLbL. The third topic involves HLbL forward scattering amplitudes calculated in lattice QCD which can be described, using dispersion relations (HLbL sum rules), by gamma^* gamma^* -> hadrons fusion cross sections and then compared with phenomenological models.
The hadronic light-by-light scattering contribution to the muon g-2 is the most troublesome component of its theoretical prediction; (1) it cannot be determined from the other measurable quantities, (2) the dimensional argument and the estimation bas
We review recent developments concerning the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon. We first discuss why fully off-shell hadronic form factors should be used for the evaluation of this contributi
The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic
We report the first result for the hadronic light-by-light scattering contribution to the muon anomalous magnetic moment with all errors systematically controlled. Several ensembles using 2+1 flavors of physical mass Mobius domain-wall fermions, gene
We report preliminary results for the hadronic light-by-light scattering contribution to the muon anomalous magnetic moment. Several ensembles using 2+1 flavors of Mobius domain-wall fermions, generated by the RBC/UKQCD collaborations, are employed t