ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-averaging sequences which fail to converge

299   0   0.0 ( 0 )
 نشر من قبل Henk Don
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider self-averaging sequences in which each term is a weighted average over previous terms. For several sequences of this kind it is known that they do not converge to a limit. These sequences share the property that $n$th term is mainly based on terms around a fixed fraction of $n$. We give a probabilistic interpretation to such sequences and give weak conditions under which it is natural to expect non-convergence. Our methods are illustrated by application to the group Russian roulette problem.



قيم البحث

اقرأ أيضاً

We get a continuous one-parameter new family of embedded minimal surfaces, of which the period problems are two-dimensional. Moreover, one proves that it has Scherk second surface and Hoffman-Wohlgemuth example as limit-members.
One possible explanation for the substantial organismal differences between humans and chimpanzees is that there have been changes in gene regulation. Given what is known about transcription factor binding sites, this motivates the following probabil ity question: given a 1000 nucleotide region in our genome, how long does it take for a specified six to nine letter word to appear in that region in some individual? Stone and Wray [Mol. Biol. Evol. 18 (2001) 1764--1770] computed 5,950 years as the answer for six letter words. Here, we will show that for words of length 6, the average waiting time is 100,000 years, while for words of length 8, the waiting time has mean 375,000 years when there is a 7 out of 8 letter match in the population consensus sequence (an event of probability roughly 5/16) and has mean 650 million years when there is not. Fortunately, in biological reality, the match to the target word does not have to be perfect for binding to occur. If we model this by saying that a 7 out of 8 letter match is good enough, the mean reduces to about 60,000 years.
Let $(X _i)_{igeq1}$ be a stationary sequence. Denote $m=lfloor n^alpha rfloor, 0< alpha < 1,$ and $ k=lfloor n/m rfloor,$ where $lfloor a rfloor$ stands for the integer part of $a.$ Set $S_{j}^circ = sum_{i=1}^m X_{m(j-1)+i}, 1leq j leq k,$ and $ (V _k^circ)^2 = sum_{j=1}^k (S_{j}^circ)^2.$ We prove a Cramer type moderate deviation expansion for $mathbb{P}( sum_{j=1}^k S_{j}^circ /V_k^circ geq x)$ as $nto infty.$ Applications to mixing type sequences, contracting Markov chains, expanding maps and confidence intervals are discussed.
87 - Michael Baake 2017
The goal of this expository article is a fairly self-contained account of some averaging processes of functions along sequences of the form $(alpha^n x)^{}_{ninmathbb{N}}$, where $alpha$ is a fixed real number with $| alpha | > 1$ and $xinmathbb{R}$ is arbitrary. Such sequences appear in a multitude of situations including the spectral theory of inflation systems in aperiodic order. Due to the connection with uniform distribution theory, the results will mostly be metric in nature, which means that they hold for Lebesgue-almost every $xinmathbb{R}$.
Let $mathcal{B}$ be the set of rooted trees containing an infinite binary subtree starting at the root. This set satisfies the metaproperty that a tree belongs to it if and only if its root has children $u$ and $v$ such that the subtrees rooted at $u $ and $v$ belong to it. Let $p$ be the probability that a Galton-Watson tree falls in $mathcal{B}$. The metaproperty makes $p$ satisfy a fixed-point equation, which can have multiple solutions. One of these solutions is $p$, but what is the meaning of the others? In particular, are they probabilities of the Galton-Watson tree falling into other sets satisfying the same metaproperty? We create a framework for posing questions of this sort, and we classify solutions to fixed-point equations according to whether they admit probabilistic interpretations. Our proofs use spine decompositions of Galton-Watson trees and the analysis of Boolean functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا