ﻻ يوجد ملخص باللغة العربية
We consider self-averaging sequences in which each term is a weighted average over previous terms. For several sequences of this kind it is known that they do not converge to a limit. These sequences share the property that $n$th term is mainly based on terms around a fixed fraction of $n$. We give a probabilistic interpretation to such sequences and give weak conditions under which it is natural to expect non-convergence. Our methods are illustrated by application to the group Russian roulette problem.
We get a continuous one-parameter new family of embedded minimal surfaces, of which the period problems are two-dimensional. Moreover, one proves that it has Scherk second surface and Hoffman-Wohlgemuth example as limit-members.
One possible explanation for the substantial organismal differences between humans and chimpanzees is that there have been changes in gene regulation. Given what is known about transcription factor binding sites, this motivates the following probabil
Let $(X _i)_{igeq1}$ be a stationary sequence. Denote $m=lfloor n^alpha rfloor, 0< alpha < 1,$ and $ k=lfloor n/m rfloor,$ where $lfloor a rfloor$ stands for the integer part of $a.$ Set $S_{j}^circ = sum_{i=1}^m X_{m(j-1)+i}, 1leq j leq k,$ and $ (V
The goal of this expository article is a fairly self-contained account of some averaging processes of functions along sequences of the form $(alpha^n x)^{}_{ninmathbb{N}}$, where $alpha$ is a fixed real number with $| alpha | > 1$ and $xinmathbb{R}$
Let $mathcal{B}$ be the set of rooted trees containing an infinite binary subtree starting at the root. This set satisfies the metaproperty that a tree belongs to it if and only if its root has children $u$ and $v$ such that the subtrees rooted at $u