ﻻ يوجد ملخص باللغة العربية
Let $(X _i)_{igeq1}$ be a stationary sequence. Denote $m=lfloor n^alpha rfloor, 0< alpha < 1,$ and $ k=lfloor n/m rfloor,$ where $lfloor a rfloor$ stands for the integer part of $a.$ Set $S_{j}^circ = sum_{i=1}^m X_{m(j-1)+i}, 1leq j leq k,$ and $ (V_k^circ)^2 = sum_{j=1}^k (S_{j}^circ)^2.$ We prove a Cramer type moderate deviation expansion for $mathbb{P}( sum_{j=1}^k S_{j}^circ /V_k^circ geq x)$ as $nto infty.$ Applications to mixing type sequences, contracting Markov chains, expanding maps and confidence intervals are discussed.
Let $(xi_i,mathcal{F}_i)_{igeq1}$ be a sequence of martingale differences. Set $S_n=sum_{i=1}^nxi_i $ and $[ S]_n=sum_{i=1}^n xi_i^2.$ We prove a Cramer type moderate deviation expansion for $mathbf{P}(S_n/sqrt{[ S]_n} geq x)$ as $nto+infty.$ Our res
Let $(Z_n)_{ngeq0}$ be a supercritical Galton-Watson process. Consider the Lotka-Nagaev estimator for the offspring mean. In this paper, we establish self-normalized Cram{e}r type moderate deviations and Berry-Esseens bounds for the Lotka-Nagaev esti
Let {(X_i,Y_i)}_{i=1}^n be a sequence of independent bivariate random vectors. In this paper, we establish a refined Cramer type moderate deviation theorem for the general self-normalized sum sum_{i=1}^n X_i/(sum_{i=1}^n Y_i^2)^{1/2}, which unifies a
A Cramer-type moderate deviation theorem quantifies the relative error of the tail probability approximation. It provides theoretical justification when the limiting tail probability can be used to estimate the tail probability under study. Chen Fang
In this paper we study the moderate deviations for the magnetization of critical Curie-Weiss model. Chen, Fang and Shao considered a similar problem for non-critical model by using Stein method. By direct and simple arguments based on Laplace method,