ﻻ يوجد ملخص باللغة العربية
Clouds of high infrared extinction are promising sites of massive star/cluster formation. A large number of cloud cores discovered in recent years allows investigation of possible evolutionary sequence among cores in early phases. We have conducted a survey of deuterium fractionation toward 15 dense cores in various evolutionary stages, from high-mass starless cores to ultracompact Hii regions, in the massive star-forming clouds of high extinction, G34.43+0.24, IRAS 18151-1208, and IRAS 18223-1243, with the Submillimeter Telescope (SMT). Spectra of N2H+ (3 - 2), N2D+ (3 - 2), and C18O (2 - 1) were observed to derive the deuterium fractionation of N2H+, Dfrac equiv N(N2D+)/N(N2H+), as well as the CO depletion factor for every selected core. Our results show a decreasing trend in Dfrac with both gas temperature and linewidth. Since colder and quiescent gas is likely to be associated with less evolved cores, larger Dfrac appears to correlate with early phases of core evolution. Such decreasing trend resembles the behavior of Dfrac in the low-mass protostellar cores and is consistent with several earlier studies in high-mass protostellar cores. We also find a moderate increasing trend of Dfrac with the CO depletion factor, suggesting that sublimation of ice mantles alters the competition in the chemical reactions and reduces Dfrac. Our findings suggest a general chemical behavior of deuterated species in both low- and high-mass proto-stellar candidates at early stages. In addition, upper limits to the ionization degree are estimated to be within 2 times 10^-7 and 5 times 10^-6. The four quiescent cores have marginal field-neutral coupling and perhaps favor turbulent cooling flows.
We have observed the J=3-2 transition of N2H+ and N2D+ to investigate the trend of deuterium fractionation with evolutionary stage in three selected regions in the Infrared Dark Cloud (IRDC) G28.34+0.06 with the Submillimeter Telescope (SMT) and the
High levels of deuterium fraction in N$_2$H$^+$ are observed in some pre-stellar cores. Single-zone chemical models find that the timescale required to reach observed values ($D_{rm frac}^{{rm N}_2{rm H}^+} equiv {rm N}_2{rm D}^+/{rm N}_2{rm H}^+ gtr
High levels of deuterium fractionation of $rm N_2H^+$ (i.e., $rm D_{frac}^{N_2H^+} gtrsim 0.1$) are often observed in pre-stellar cores (PSCs) and detection of $rm N_2D^+$ is a promising method to identify elusive massive PSCs. However, the physical
We report the detection of D2CO in a sample of starless dense cores, in which we previously measured the degree of CO depletion. The deuterium fractionation is found extremely high, [D2CO]/[H2CO] ~ 1-10 %, similar to that reported in low-mass protost
We have performed a pointed survey of N2D+ 2-1 and N2D+ 3-2 emission toward 64 N2H+-bright starless and protostellar cores in the Perseus molecular cloud using the Arizona Radio Observatory Submillimeter Telescope and Kitt Peak 12 m telescope. We fin