ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppressing spin relaxation in silicon

119   0   0.0 ( 0 )
 نشر من قبل Hanan Dery
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Uniaxial compressive strain along the [001] direction strongly suppresses the spin relaxation in silicon. When the strain level is large enough so that electrons are redistributed only in the two valleys along the strain axis, the dominant scattering mechanisms are quenched and electrons mainly experience intra-axis scattering processes (intravalley or intervalley scattering within valleys on the same crystal axis). We first derive the spin-flip matrix elements due to intra-axis electron scattering off impurities, and then provide a comprehensive model of the spin relaxation time due to all possible interactions of conduction-band electrons with impurities and phonons. We predict nearly three orders of magnitude improvement in the spin relaxation time of $sim10^{19}text{cm}^{-3}$ antimony-doped silicon (Si:Sb) at low temperatures.



قيم البحث

اقرأ أيضاً

Compared with direct-gap semiconductors, the valley degeneracy of silicon and germanium opens up new channels for spin relaxation that counteract the spin degeneracy of the inversion-symmetric system. Here the symmetries of the electron-phonon intera ction for silicon and germanium are identified and the resulting spin lifetimes are calculated. Room-temperature spin lifetimes of electrons in silicon are found to be comparable to those in gallium arsenide, however, the spin lifetimes in silicon or germanium can be tuned by reducing the valley degeneracy through strain or quantum confinement. The tunable range is limited to slightly over an order of magnitude by intravalley processes.
Bismuth chalcogenides Bi$_2$Se$_3$ and Bi$_2$Te$_3$ are semiconductors, which can be both thermoelectric materials (TE) and topological insulators (TI). Lattice defects arising from vacancies, impurities, or dopants in these materials are important i n that they provide the charge carriers in TE applications and compromise the performance of these materials as TIs. We present the first solid-state nuclear magnetic resonance (NMR) study of the $^{77}$Se and $^{125}$Te NMR resonances in polycrystalline powders of Bi$_2$Se$_3$ and Bi$_2$Te$_3$, respectively. The spin-lattice ($T_1$) relaxation is modeled by at most two exponentials. Within the framework of this model, the NMR measurement is sensitive to the distribution of native defects within these materials. One component corresponds to a stoichiometric fraction, an insulator with a very long $T_1$, whereas the other component is attributed to a sample fraction with high defect content with a short $T_1$ resulting from interaction with the conduction carriers. The absence of a very long $T_1$ in the bismuth telluride suggests defects throughout the sample. For the bismuth selenide, defect regions segregate into domains. We also find a substantial difference in the short $T_1$ component for $^{125}$Te nuclei (76 ms) and $^{77}$Se (0.63 s) in spite of the fact that these materials have nearly identical lattice structures, chemical and physical properties. Investigations of the NMR shift and Korringa law indicate that the coupling to the conduction band electrons at the chalcogenide sites is much stronger in the telluride. The results are consistent with a stronger spin-orbit coupling (SOC) to the $p$-band electrons in the telluride. If most parameters of a given material are kept equal, this type of experiment could provide a useful probe of SOC in engineered TI materials.
We investigate ultrafast demagnetization due to electron-phonon interaction in a model band-ferromagnet. We show that the microscopic mechanism behind the spin dynamics due to electron-phonon interaction is the interplay of scattering and the precess ion around momentum-dependent effective internal spin-orbit magnetic fields. The resulting magnetization dynamics can only be mimicked by spin-flip transitions if the spin precession around the internal fields is sufficiently fast (compared to the scattering time) so that it averages out the transverse spin components.
185 - M. Q. Weng , Y. Y. Wang , M. W. Wu 2009
The spin relaxation time $T_{1}$ in zinc blende GaN quantum dot is investigated for different magnetic field, well width and quantum dot diameter. The spin relaxation caused by the two most important spin relaxation mechanisms in zinc blende semicond uctor quantum dots, {i.e.} the electron-phonon scattering in conjunction with the Dresselhaus spin-orbit coupling and the second-order process of the hyperfine interaction combined with the electron-phonon scattering, are systematically studied. The relative importance of the two mechanisms are compared in detail under different conditions. It is found that due to the small spin orbit coupling in GaN, the spin relaxation caused by the second-order process of the hyperfine interaction combined with the electron-phonon scattering plays much more important role than it does in the quantum dot with narrower band gap and larger spin-orbit coupling, such as GaAs and InAs.
The relaxation dynamics of hot carriers in silicon (100) is studied via a novel holistic approach based on phase-resolved transient absorption spectroscopy with few-cycle optical pulses. After excitation by a sub-5 fs light pulse, strong electron-pho non coupling leads to an ultrafast momentum relaxation with time constant of 10 fs. The thermalization of the hot carriers occurs on a time constant of 150 fs, visible in the temporal evolution of the collision time as extracted from the Drude model. We find an increase of the collision time from 3 fs for the shortest timescales with a saturation at approximately 18 fs. Moreover, the optical effective mass of the hot carrier ensemble evolves on ultrafast timescales as well, with a bi-exponential decrease from 0.7 $m_e$ to about 0.125 $m_e$ and time constants of 4 fs and 58 fs. The presented information on the electron mass dynamics as well as the momentum-, energy-, and collision-scattering times with unprecedented time resolution is important for all hot carrier optoelectronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا