ترغب بنشر مسار تعليمي؟ اضغط هنا

Existence of solutions for a class of fourth order cross-diffusion systems of gradient flow type

275   0   0.0 ( 0 )
 نشر من قبل Jonathan Zinsl
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This article is concerned with the existence and the long time behavior of weak solutions to certain coupled systems of fourth-order degenerate parabolic equations of gradient flow type. The underlying metric is a Wasserstein-like transportation distance for vector-valued functions, with nonlinear mobilities in each component. Under the hypothesis of (flat) convexity of the driving free energy functional, weak solutions are constructed by means of the variational minimizing movement scheme for metric gradient flows. The essential regularity estimates are derived by variational methods.

قيم البحث

اقرأ أيضاً

A nonlinear parabolic equation of sixth order is analyzed. The equation arises as a reduction of a model from quantum statistical mechanics, and also as the gradient flow of a second-order information functional with respect to the $L^2$-Wasserstein metric. First, we prove global existence of weak solutions for initial conditions of finite entropy by means of the time-discrete minimizing movement scheme. Second, we calculate the linearization of the dynamics around the unique stationary solution, for which we can explicitly compute the entire spectrum. A key element in our approach is a particular relation between the entropy, the Fisher information and the second order functional that generates the gradient flow under consideration.
231 - Yuzhu Han , Wenjie Gao 2013
In this paper, the finite time extinction of solutions to the fast diffusion system $u_t=mathrm{div}(| abla u|^{p-2} abla u)+v^m$, $v_t=mathrm{div}(| abla v|^{q-2} abla v)+u^n$ is investigated, where $1<p,q<2$, $m,n>0$ and $Omegasubset mathbb{R}^N (N geq1)$ is a bounded smooth domain. After establishing the local existence of weak solutions, the authors show that if $mn>(p-1)(q-1)$, then any solution vanishes in finite time provided that the initial data are ``comparable; if $mn=(p-1)(q-1)$ and $Omega$ is suitably small, then the existence of extinction solutions for small initial data is proved by using the De Giorgi iteration process and comparison method. On the other hand, for $1<p=q<2$ and $mn<(p-1)^2$, the existence of at least one non-extinction solution for any positive smooth initial data is proved.
This paper deals with the existence of positive solutions for the nonlinear system q(t)phi(p(t)u_{i}(t)))+f^{i}(t,textbf{u})=0,quad 0<t<1,quad i=1,2,...,n. This system often arises in the study of positive radial solutions of nonlinear elliptic syste m. Here $textbf{u}=(u_{1},...,u_{n})$ and $f^{i}, i=1,2,...,n$ are continuous and nonnegative functions, $p(t), q(t)hbox{rm :} [0,1]to (0,oo)$ are continuous functions. Moreover, we characterize the eigenvalue intervals for (q(t)phi(p(t)u_{i}(t)))+lambda h_{i}(t)g^{i} (textbf{u})=0, quad 0<t<1,quad i=1,2,...,n. The proof is based on a well-known fixed point theorem in cones.
As an extension of our previous work in Sun et.al (2018) [41], we develop a discontinuous Galerkin method for solving cross-diffusion systems with a formal gradient flow structure. These systems are associated with non-increasing entropy functionals. For a class of problems, the positivity (non-negativity) of solutions is also expected, which is implied by the physical model and is crucial to the entropy structure. The semi-discrete numerical scheme we propose is entropy stable. Furthermore, the scheme is also compatible with the positivity-preserving procedure in Zhang (2017) [42] in many scenarios. Hence the resulting fully discrete scheme is able to produce non-negative solutions. The method can be applied to both one-dimensional problems and two-dimensional problems on Cartesian meshes. Numerical examples are given to examine the performance of the method.
184 - Hailiang Liu , Peimeng Yin 2020
For a class of fourth order gradient flow problems, integration of the scalar auxiliary variable (SAV) time discretization with the penalty-free discontinuous Galerkin (DG) spatial discretization leads to SAV-DG schemes. These schemes are linear and shown unconditionally energy stable. But the reduced linear systems are rather expensive to solve due to the dense coefficient matrices. In this paper, we provide a procedure to pre-evaluate the auxiliary variable in the piecewise polynomial space. As a result, the computational complexity of $O(mathcal{N}^2)$ reduces to $O(mathcal{N})$ when exploiting the conjugate gradient (CG) solver. This hybrid SAV-DG method is more efficient and able to deliver satisfactory results of high accuracy. This was also compared with solving the full augmented system of the SAV-DG schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا