ﻻ يوجد ملخص باللغة العربية
We advance a holographic conjecture for the entanglement negativity of bipartite quantum states in $(1+1)$-dimensional conformal field theories in the $AdS_3/CFT_2$ framework. Our conjecture exactly reproduces the replica technique results in the large central charge limit, for both the pure state described by the $CFT_{1+1}$ vacuum dual to bulk the pure $AdS_3$ geometry and the finite temperature mixed state dual to a Euclidean BTZ black hole respectively. The holographic entanglement negativity characterizes the distillable entanglement and reduces to a specific sum of holographic mutual informations. We briefly allude to a possible higher dimensional generalization of our conjecture in a generic $AdS_{d+1}/CFT_{d}$ scenario.
We propose a covariant holographic conjecture for the entanglement negativity of mixed states in bipartite systems described by $d$-dimensional conformal field theories dual to bulk non static $AdS_{d+1}$ configurations. Application of our conjecture
Since the work of Ryu and Takayanagi, deep connections between quantum entanglement and spacetime geometry have been revealed. The negative eigenvalues of the partial transpose of a bipartite density operator is a useful diagnostic of entanglement. I
In this paper we study the application of holographic entanglement negativity proposal for bipartite states in the 2d Galilean conformal field theory ($GCFT_2$) dual to bulk asymptotically flat spacetimes in the context of generalized minimal massive
Quantum corrections to holographic entanglement entropy require knowledge of the bulk quantum state. In this paper, we derive a novel dual prescription for the generalized entropy that allows us to interpret the leading quantum corrections in a geome
We investigate the application of our recent holographic entanglement negativity conjecture for higher dimensional conformal field theories to specific examples which serve as crucial consistency checks. In this context we compute the holographic ent