ترغب بنشر مسار تعليمي؟ اضغط هنا

Covariant holographic entanglement negativity

202   0   0.0 ( 0 )
 نشر من قبل Vinay Malvimat
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a covariant holographic conjecture for the entanglement negativity of mixed states in bipartite systems described by $d$-dimensional conformal field theories dual to bulk non static $AdS_{d+1}$ configurations. Application of our conjecture to $(1+1)$-dimensional conformal field theories dual to bulk rotating BTZ black holes exactly reproduces the corresponding entanglement negativity in the large central charge limit and characterizes the distillable entanglement. We further demonstrate that our conjecture applied to the case of bulk extremal rotating BTZ black holes also characterizes the entanglement negativity for the chiral half of the corresponding zero temperature $(1+1)$-dimensional holographic conformal field theories.



قيم البحث

اقرأ أيضاً

We advance a holographic conjecture for the entanglement negativity of bipartite quantum states in $(1+1)$-dimensional conformal field theories in the $AdS_3/CFT_2$ framework. Our conjecture exactly reproduces the replica technique results in the lar ge central charge limit, for both the pure state described by the $CFT_{1+1}$ vacuum dual to bulk the pure $AdS_3$ geometry and the finite temperature mixed state dual to a Euclidean BTZ black hole respectively. The holographic entanglement negativity characterizes the distillable entanglement and reduces to a specific sum of holographic mutual informations. We briefly allude to a possible higher dimensional generalization of our conjecture in a generic $AdS_{d+1}/CFT_{d}$ scenario.
Since the work of Ryu and Takayanagi, deep connections between quantum entanglement and spacetime geometry have been revealed. The negative eigenvalues of the partial transpose of a bipartite density operator is a useful diagnostic of entanglement. I n this paper, we discuss the properties of the associated entanglement negativity and its Renyi generalizations in holographic duality. We first review the definition of the Renyi negativities, which contain the familiar logarithmic negativity as a special case. We then study these quantities in the random tensor network model and rigorously derive their large bond dimension asymptotics. Finally, we study entanglement negativity in holographic theories with a gravity dual, where we find that Renyi negativities are often dominated by bulk solutions that break the replica symmetry. From these replica symmetry breaking solutions, we derive general expressions for Renyi negativities and their special limits including the logarithmic negativity. In fixed-area states, these general expressions simplify dramatically and agree precisely with our results in the random tensor network model. This provides a concrete setting for further studying the implications of replica symmetry breaking in holography.
132 - M. R. Setare , M. Koohgard 2021
In this paper we study the application of holographic entanglement negativity proposal for bipartite states in the 2d Galilean conformal field theory ($GCFT_2$) dual to bulk asymptotically flat spacetimes in the context of generalized minimal massive gravity (GMMG) model. $GCFT_2$ is considered on the boundary side of the duality and the bulk gravity is described by GMMG that is asymptotically symmetric under the Galilean conformal transformations. In this paper, the replica technique, based on the two-point and the four-point twist correlators, is utilized and the entanglement entropy and the entanglement negativity are obtained in the bipartite configurations of the system in the boundary. This paper generalizes similar studies of $Flat_3/GCFT_2$ holography in Einstein gravity and topologically massive gravity (TMG).
We investigate the application of our recent holographic entanglement negativity conjecture for higher dimensional conformal field theories to specific examples which serve as crucial consistency checks. In this context we compute the holographic ent anglement negativity for bipartite pure and finite temperature mixed state configurations in $d$-dimensional conformal field theories dual to bulk pure $AdS_{d+1}$ geometry and $AdS_{d+1}$-Schwarzschild black holes respectively. It is observed that the holographic entanglement negativity characterizes the distillable entanglement for the finite temperature mixed states through the elimination of the thermal contributions. Significantly our examples correctly reproduce universal features of the entanglement negativity for corresponding two dimensional conformal field theories, in higher dimensions.
164 - Elena Caceres 2016
We use the Iyer-Wald formalism to derive an extended first law of entanglement that includes variations in the cosmological constant, Newtons constant and --in the case of higher-derivative theories-- all the additional couplings of the theory. In Ei nstein gravity, where the number of degrees of freedom $N^2$ of the dual field theory is a function of $Lambda$ and $G$, our approach allows us to vary $N$ keeping the field theory scale fixed or to vary the field theory scale keeping $N$ fixed. We also derive an extended first law of entanglement for Gauss-Bonnet and Lovelock gravity and show that in these cases all the extra variations reorganize nicely in terms of the central charges of the theory. Finally, we comment on the implications for renormalization group flows and c-theorems in higher dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا