ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal self-field critical current for thin-film superconductors

81   0   0.0 ( 0 )
 نشر من قبل Jeff Tallon
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For any practical superconductor the magnitude of the critical current density, $J_textrm{c}$, is crucially important. It sets the upper limit for current in the conductor. Usually $J_textrm{c}$ falls rapidly with increasing external magnetic field but even in zero external field the current flowing in the conductor generates a self-field which limits $J_textrm{c}$. Here we show for thin films of thickness less than the London penetration depth, $lambda$, this limiting $J_textrm{c}$ adopts a universal value for all superconductors - metals, oxides, cuprates, pnictides, borocarbides and heavy Fermions. For type I superconductors, it is $H_{textrm{c}}/lambda$ where $H_textrm{c}$ is the thermodynamic critical field. But surprisingly for type II superconductors we find the self-field $J_textrm{c}$ is $H_{textrm{c}1}/lambda$ where $H_{textrm{c}1}$ is the lower critical field. $J_textrm{c}$ is thus fundamentally determined and this provides a simple means to extract absolute values of $lambda(T)$ and, from its temperature dependence, the symmetry and magnitude of the superconducting gap.

قيم البحث

اقرأ أيضاً

Universal scaling behaviour in superconductors has significantly elucidated fluctuation and phase transition phenomena in these materials. However, universal behaviour for the most practical property, the critical current, was not contemplated becaus e prevailing models invoke nucleation and migration of flux vortices. Such migration depends critically on pinning, and the detailed microstructure naturally differs from one material to another, even within a single material. Through microstructural engineering there have been ongoing improvements in the field-dependent critical current, thus illustrating its nonuniversal behaviour. But here we demonstrate the universal size scaling of the self-field critical current for any superconductor, of any symmetry, geometry or band multiplicity. Key to our analysis is the huge range of sample dimensions, from single-atomic-layer to mm-scale. These have widely variable microstructure with transition temperatures ranging from 1.2 K to the current record, 203 K. In all cases the critical current is governed by a fundamental surface current density limit given by the relevant critical field divided by the penetration depth.
189 - C.B. Eom , M.K. Lee , J.H. Choi 2001
The discovery of superconductivity at 39 K in magnesium diboride offers the possibility of a new class of low-cost, high-performance superconducting materials for magnets and electronic applications. With twice the critical temperature of Nb_3Sn and four times that of Nb-Ti alloy, MgB_2 has the potential to reach much higher fields and current densities than either of these technological superconductors. A vital prerequisite, strongly linked current flow, has already been demonstrated even at this early stage. One possible drawback is the observation that the field at which superconductivity is destroyed is modest. Further, the field which limits the range of practical applications, the irreversibility field H*(T), is ~7 T at liquid helium temperature (4.2 K), significantly lower than ~10 T for Nb-Ti and ~20 T for Nb_3Sn. Here we show that MgB_2 thin films can exhibit a much steeper temperature dependence of H*(T) than is observed in bulk materials, yielding H*(4.2 K) above 14 T. In addition, very high critical current densities at 4.2 K, 1 MA/cm_2 at 1 T and 10_5 A/cm_2 at 10 T, are possible. These data demonstrate that MgB_2 has credible potential for high-field superconducting applications.
A novel mathematical approach has been developed to complete the inversion of the Biot-Savart law in one- and two-dimensional cases from measurements of the perpendicular component of the magnetic field using the well-developed Magneto-Optical Imagin g technique. Our approach, especially in the 2D case, is provided in great detail to allow a straightforward implementation as opposed to those found in the literature. Our new approach also refines our previous results for the 1D case [Johansen et al., Phys. Rev. B 54, 16264 (1996)], and streamlines the method developed by Jooss et al. [Physica C 299, 215 (1998)] deemed as the most accurate if compared to that of Roth et al. [J. Appl. Phys. 65, 361 (1989)]. We also verify and streamline the iterative technique, which was developed following Laviano et al. [Supercond. Sci. Technol. 16, 71 (2002)] to account for in-plane magnetic fields caused by the bending of the applied magnetic field due to the demagnetising effect. After testing on magneto-optical images of a high quality YBa2Cu3O7 superconducting thin film, we show that the procedure employed is effective.
We present a detailed study of the electrical transport properties of YBa2Cu3O7-{delta} thin film. The irreversibility fields ({mu}_0 H_irr), upper critical fields ({mu}_0 H_C2), penetration depths ({lambda}) and coherence lengths ({xi} ) of the YBa2 Cu3O7-{delta} materials are deduced from the resistivity curves. Itis observed that {mu}_0 H_irr, {mu}_0 H_C2 and {Delta}Tc of the film strongly depend on the direction and strength of the field. The coherence length {xi} (0) and penetration depth {lambda} (0) values at T = 0 K has been calculated from the irreversibility fields ({mu}_0 H_irr) and upper critical fields ({mu}_0 H_C2) respectively. Based on all the results, the change of the superconducting properties as a function of the magnetic field direction presents the anisotropy of the sample produced.
Microstructura lly clean, isov alently P-doped BaFe2As2 (Ba-122) single crystalline thin films have been prepared on MgO (001) substrates by molecular beam epitaxy. These films show a superconducting transition temperature (Tc) of over 30 K although P content is around 0.22, which is lower than the optimal one for single crystals (i.e., 0.33). The enhanced Tc at this doping level is attributed to the in-plane tensile strain. The strained film shows high transport self-field critical current densities (Jc) of over 6 MA/cm2 at 4.2 K, which are among the highest for Fe based superconductors (FeSCs). In-field Jc exceeds 0.1 MA/cm2 at m0H = 35 T for H||ab and m0H = 18 T for H||c at 4.2 K, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar Tc. Structural investigations reveal no defects or misoriented grains pointing to strong pinning centers. We relate this unexpected high Jc to a strong enhancement of the vortex core energy at optimal Tc, driven by in-plane strain and doping. These unusually high Jc make P-doped Ba-122 very favorable for high-field magnet applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا