ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral properties of the Cayley Graphs of split metacyclic groups

109   0   0.0 ( 0 )
 نشر من قبل Kashyap Rajeevsarathy
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $Gamma(G,S)$ denote the Cayley graph of a group $G$ with respect to a set $S subset G$. In this paper, we analyze the spectral properties of the Cayley graphs $mathcal{T}_{m,n,k} = Gamma(mathbb{Z}_m ltimes_k mathbb{Z}_n, {(pm 1,0),(0,pm 1)})$, where $m,n geq 3$ and $k^m equiv 1 pmod{n}$. We show that the adjacency matrix of $mathcal{T}_{m,n,k}$, upto relabeling, is a block circulant matrix, and we also obtain an explicit description of these blocks. By extending a result due to Walker-Mieghem to Hermitian matrices, we show that $mathcal{T}_{m,n,k}$ is not Ramanujan, when either $m > 8$, or $n geq 400$.

قيم البحث

اقرأ أيضاً

Let $G_{m,n,k} = mathbb{Z}_m ltimes_k mathbb{Z}_n$ be the split metacyclic group, where $k$ is a unit modulo $n$. We derive an upper bound for the diameter of $G_{m,n,k}$ using an arithmetic parameter called the textit{weight}, which depends on $n$, $k$, and the order of $k$. As an application, we show how this would determine a bound on the diameter of an arbitrary metacyclic group.
70 - Li Cui , Jin-Xin Zhou 2018
Let $m,n,r$ be positive integers, and let $G=langle arangle: langle brangle cong mathbb{Z}_n: mathbb{Z}_m$ be a split metacyclic group such that $b^{-1}ab=a^r$. We say that $G$ is {em absolutely split with respect to $langle arangle$} provided that f or any $xin G$, if $langle xranglecaplangle arangle=1$, then there exists $yin G$ such that $xinlangle yrangle$ and $G=langle arangle: langle yrangle$. In this paper, we give a sufficient and necessary condition for the group $G$ being absolutely split. This generalizes a result of Sanming Zhou and the second author in [arXiv: 1611.06264v1]. We also use this result to investigate the relationship between metacirculants and weak metacirculants. Metacirculants were introduced by Alspach and Parsons in $1982$ and have been a rich source of various topics since then. As a generalization of this classes of graphs, Maruv siv c and v Sparl in 2008 posed the so called weak metacirculants. A graph is called a {em weak metacirculant} if it has a vertex-transitive metacyclic automorphism group. In this paper, it is proved that a weak metacirculant of $2$-power order is a metacirculant if and only if it has a vertex-transitive split metacyclic automorphism group. This provides a partial answer to an open question in the literature.
Let $G$ be a finitely generated group acting faithfully and properly discontinuously by homeomorphisms on a planar surface $X subseteq mathbb{S}^2$. We prove that $G$ admits such an action that is in addition co-compact, provided we can replace $X$ b y another surface $Y subseteq mathbb{S}^2$. We also prove that if a group $H$ has a finitely generated Cayley (multi-)graph $C$ covariantly embeddable in $mathbb{S}^2$, then $C$ can be chosen so as to have no infinite path on the boundary of a face. The proofs of these facts are intertwined, and the classes of groups they define coincide. In the orientation-preserving case they are exactly the (isomorphism types of) finitely generated Kleinian function groups. We construct a finitely generated planar Cayley graph whose group is not in this class. In passing, we observe that the Freudenthal compactification of every planar surface is homeomorphic to the sphere.
75 - Dave Witte Morris 2020
Let $X$ be a connected Cayley graph on an abelian group of odd order, such that no two distinct vertices of $X$ have exactly the same neighbours. We show that the direct product $X times K_2$ (also called the canonical double cover of $X$) has only t he obvious automorphisms (namely, the ones that come from automorphisms of its factors $X$ and $K_2$). This means that $X$ is stable. The proof is short and elementary. The theory of direct products implies that $K_2$ can be replaced with members of a much more general family of connected graphs.
189 - Koji Momihara 2020
Davis and Jedwab (1997) established a great construction theory unifying many previously known constructions of difference sets, relative difference sets and divisible difference sets. They introduced the concept of building blocks, which played an i mportant role in the theory. On the other hand, Polhill (2010) gave a construction of Paley type partial difference sets (conference graphs) based on a special system of building blocks, called a covering extended building set, and proved that there exists a Paley type partial difference set in an abelian group of order $9^iv^4$ for any odd positive integer $v>1$ and any $i=0,1$. His result covers all orders of nonelementary abelian groups in which Paley type partial difference sets exist. In this paper, we give new constructions of strongly regular Cayley graphs on abelian groups by extending the theory of building blocks. The constructions are large generalizations of Polhills construction. In particular, we show that for a positive integer $m$ and elementary abelian groups $G_i$, $i=1,2,ldots,s$, of order $q_i^4$ such that $2m,|,q_i+1$, there exists a decomposition of the complete graph on the abelian group $G=G_1times G_2times cdotstimes G_s$ by strongly regular Cayley graphs with negative Latin square type parameters $(u^2,c(u+1),- u+c^2+3 c,c^2+ c)$, where $u=q_1^2q_2^2cdots q_s^2$ and $c=(u-1)/m$. Such strongly regular decompositions were previously known only when $m=2$ or $G$ is a $p$-group. Moreover, we find one more new infinite family of decompositions of the complete graphs by Latin square type strongly regular Cayley graphs. Thus, we obtain many strongly regular graphs with new parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا