ﻻ يوجد ملخص باللغة العربية
Let $G$ be a finitely generated group acting faithfully and properly discontinuously by homeomorphisms on a planar surface $X subseteq mathbb{S}^2$. We prove that $G$ admits such an action that is in addition co-compact, provided we can replace $X$ by another surface $Y subseteq mathbb{S}^2$. We also prove that if a group $H$ has a finitely generated Cayley (multi-)graph $C$ covariantly embeddable in $mathbb{S}^2$, then $C$ can be chosen so as to have no infinite path on the boundary of a face. The proofs of these facts are intertwined, and the classes of groups they define coincide. In the orientation-preserving case they are exactly the (isomorphism types of) finitely generated Kleinian function groups. We construct a finitely generated planar Cayley graph whose group is not in this class. In passing, we observe that the Freudenthal compactification of every planar surface is homeomorphic to the sphere.
Davis and Jedwab (1997) established a great construction theory unifying many previously known constructions of difference sets, relative difference sets and divisible difference sets. They introduced the concept of building blocks, which played an i
Let $X$ be a connected Cayley graph on an abelian group of odd order, such that no two distinct vertices of $X$ have exactly the same neighbours. We show that the direct product $X times K_2$ (also called the canonical double cover of $X$) has only t
In this paper, we construct Kleinian groups $Gamma<mathrm{Isom}(mathbb{H}^{2n})$ from the direct product of $n$ copies of the rank 2 free group $F_2$ via strict hyperbolization. We give a description of the limit set and its topological dimension. Su
In 2011, Fang et al. in (J. Combin. Theory A 118 (2011) 1039-1051) posed the following problem: Classify non-normal locally primitive Cayley graphs of finite simple groups of valency $d$, where either $dleq 20$ or $d$ is a prime number. The only case
We show that if G is a finite group whose commutator subgroup [G,G] has order 2p, where p is an odd prime, then every connected Cayley graph on G has a hamiltonian cycle.