ﻻ يوجد ملخص باللغة العربية
We investigate spin transport through metallic antiferromagnets using measurements based on spin pumping combined with inverse spin Hall effects in Ni80Fe20/FeMn/W trilayers. The relatively large magnitude and opposite sign of spin Hall effects in W compared to FeMn enable an unambiguous detection of spin currents transmitted through the entire FeMn layer thickness. Using this approach we can detect two distinctively different spin transport regimes, which we associate with electronic and magnonic spin currents respectively. The latter can extend to relatively large distances (up to 9 nm) and is enhanced when the antiferromagnetic ordering temperature is close to the measurement temperature.
Efficient injection of spin-polarized electrons into the conduction band of silicon is limited by the formation of a silicide at the ferromagnetic metal (FM)/silicon interface. In the present work, this magnetically-dead silicide (where strong spin-s
Antiferromagnetic insulators (AFMI) are robust against stray fields, and their intrinsic dynamics could enable ultrafast magneto-optics and ultrascaled magnetic information processing. Low dissipation, long distance spin transport and electrical mani
Spin wave dispersion in the metallic antiferromagnet Mn$_3$Pt was investigated just above the order-order transition temperature by using the inelastic neutron scattering technique. The spin wave dispersion at $T = 400$ K along [100], [110] and [111]
Extensive efforts have been devoted to the study of spin-orbit torque in ferromagnetic metal/heavy metal bilayers and exploitation of it for magnetization switching using an in-plane current. As the spin-orbit torque is inversely proportional to the
We present the analysis of the spin signals obtained in NiFe based metallic lateral spin valves. We exploit the spin dependent diffusive equations in both the conventional 1D analytic modeling as well as in 3D Finite Element Method simulations. Both