ترغب بنشر مسار تعليمي؟ اضغط هنا

OpenSBLI: A framework for the automated derivation and parallel execution of finite difference solvers on a range of computer architectures

317   0   0.0 ( 0 )
 نشر من قبل Christian Jacobs
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Exascale computing will feature novel and potentially disruptive hardware architectures. Exploiting these to their full potential is non-trivial. Numerical modelling frameworks involving finite difference methods are currently limited by the static nature of the hand-coded discretisation schemes and repeatedly may have to be re-written to run efficiently on new hardware. In contrast, OpenSBLI uses code generation to derive the models code from a high-level specification. Users focus on the equations to solve, whilst not concerning themselves with the detailed implementation. Source-to-source translation is used to tailor the code and enable its execution on a variety of hardware.



قيم البحث

اقرأ أيضاً

The life-cycle of a partial differential equation (PDE) solver is often characterized by three development phases: the development of a stable numerical discretization, development of a correct (verified) implementation, and the optimization of the i mplementation for different computer architectures. Often it is only after significant time and effort has been invested that the performance bottlenecks of a PDE solver are fully understood, and the precise details varies between different computer architectures. One way to mitigate this issue is to establish a reliable performance model that allows a numerical analyst to make reliable predictions of how well a numerical method would perform on a given computer architecture, before embarking upon potentially long and expensive implementation and optimization phases. The availability of a reliable performance model also saves developer effort as it both informs the developer on what kind of optimisations are beneficial, and when the maximum expected performance has been reached and optimisation work should stop. We show how discretization of a wave equation can be theoretically studied to understand the performance limitations of the method on modern computer architectures. We focus on the roofline model, now broadly used in the high-performance computing community, which considers the achievable performance in terms of the peak memory bandwidth and peak floating point performance of a computer with respect to algorithmic choices. A first principles analysis of operational intensity for key time-stepping finite-difference algorithms is presented. With this information available at the time of algorithm design, the expected performance on target computer systems can be used as a driver for algorithm design.
We describe in this paper new design techniques used in the cpp exact linear algebra library linbox, intended to make the library safer and easier to use, while keeping it generic and efficient. First, we review the new simplified structure for conta iners, based on our emph{founding scope allocation} model. We explain design choices and their impact on coding: unification of our matrix classes, clearer model for matrices and submatrices, etc Then we present a variation of the emph{strategy} design pattern that is comprised of a controller--plugin system: the controller (solution) chooses among plug-ins (algorithms) that always call back the controllers for subtasks. We give examples using the solution mul. Finally we present a benchmark architecture that serves two purposes: Providing the user with easier ways to produce graphs; Creating a framework for automatically tuning the library and supporting regression testing.
In this work we formally derive and prove the correctness of the algorithms and data structures in a parallel, distributed-memory, generic finite element framework that supports h-adaptivity on computational domains represented as forest-of-trees. Th e framework is grounded on a rich representation of the adaptive mesh suitable for generic finite elements that is built on top of a low-level, light-weight forest-of-trees data structure handled by a specialized, highly parallel adaptive meshing engine, for which we have identified the requirements it must fulfill to be coupled into our framework. Atop this two-layered mesh representation, we build the rest of data structures required for the numerical integration and assembly of the discrete system of linear equations. We consider algorithms that are suitable for both subassembled and fully-assembled distributed data layouts of linear system matrices. The proposed framework has been implemented within the FEMPAR scientific software library, using p4est as a practical forest-of-octrees demonstrator. A strong scaling study of this implementation when applied to Poisson and Maxwell problems reveals remarkable scalability up to 32.2K CPU cores and 482.2M degrees of freedom. Besides, a comparative performance study of FEMPAR and the state-of-the-art deal.ii finite element software shows at least comparative performance, and at most factor 2-3 improvements in the h-adaptive approximation of a Poisson problem with first- and second-order Lagrangian finite elements, respectively.
Getting good performance out of numerical equation solvers requires that the user has provided stable and efficient functions representing their model. However, users should not be trusted to write good code. In this manuscript we describe ModelingTo olkit (MTK), a symbolic equation-based modeling system which allows for composable transformations to generate stable, efficient, and parallelized model implementations. MTK blurs the lines of traditional symbolic computing by acting directly on a users numerical code. We show the ability to apply graph algorithms for automatically parallelizing and performing index reduction on code written for differential-algebraic equation (DAE) solvers, fixing the performance and stability of the model without requiring any changes to on the users part. We demonstrate how composable model transformations can be combined with automated data-driven surrogate generation techniques, allowing machine learning methods to generate accelerated approximate models within an acausal modeling framework. These reduced models are shown to outperform the Dymola Modelica compiler on an HVAC model by 590x at 3% error. Together, this demonstrates MTK as a system for bringing the latest research in graph transformations directly to modeling applications.
We introduce two new packages, Nemo and Hecke, written in the Julia programming language for computer algebra and number theory. We demonstrate that high performance generic algorithms can be implemented in Julia, without the need to resort to a low- level C implementation. For specialised algorithms, we use Julias efficient native C interface to wrap existing C/C++ libraries such as Flint, Arb, Antic and Singular. We give examples of how to use Hecke and Nemo and discuss some algorithms that we have implemented to provide high performance basic arithmetic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا