ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance prediction of finite-difference solvers for different computer architectures

92   0   0.0 ( 0 )
 نشر من قبل Mathias Louboutin
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The life-cycle of a partial differential equation (PDE) solver is often characterized by three development phases: the development of a stable numerical discretization, development of a correct (verified) implementation, and the optimization of the implementation for different computer architectures. Often it is only after significant time and effort has been invested that the performance bottlenecks of a PDE solver are fully understood, and the precise details varies between different computer architectures. One way to mitigate this issue is to establish a reliable performance model that allows a numerical analyst to make reliable predictions of how well a numerical method would perform on a given computer architecture, before embarking upon potentially long and expensive implementation and optimization phases. The availability of a reliable performance model also saves developer effort as it both informs the developer on what kind of optimisations are beneficial, and when the maximum expected performance has been reached and optimisation work should stop. We show how discretization of a wave equation can be theoretically studied to understand the performance limitations of the method on modern computer architectures. We focus on the roofline model, now broadly used in the high-performance computing community, which considers the achievable performance in terms of the peak memory bandwidth and peak floating point performance of a computer with respect to algorithmic choices. A first principles analysis of operational intensity for key time-stepping finite-difference algorithms is presented. With this information available at the time of algorithm design, the expected performance on target computer systems can be used as a driver for algorithm design.



قيم البحث

اقرأ أيضاً

As we rapidly approach the frontiers of ultra large computing resources, software optimization is becoming of paramount interest to scientific application developers interested in efficiently leveraging all available on-Node computing capabilities an d thereby improving a requisite science per watt metric. The scientific application of interest here is the Basic Math Library (BML) that provides a singular interface for linear algebra operation frequently used in the Quantum Molecular Dynamics (QMD) community. The provisioning of a singular interface indicates the presence of an abstraction layer which in-turn suggests commonalities in the code-base and therefore any optimization or tuning introduced in the core of code-base has the ability to positively affect the performance of the aforementioned library as a whole. With that in mind, we proceed with this investigation by performing a survey of the entirety of the BML code-base, and extract, in form of micro-kernels, common snippets of code. We introduce several optimization strategies into these micro-kernels including 1.) Strength Reduction 2.) Memory Alignment for large arrays 3.) Non Uniform Memory Access (NUMA) aware allocations to enforce data locality and 4.) appropriate thread affinity and bindings to enhance the overall multi-threaded performance. After introducing these optimizations, we benchmark the micro-kernels and compare the run-time before and after optimization for several target architectures. Finally we use the results as a guide to propagating the optimization strategies into the BML code-base. As a demonstration, herein, we test the efficacy of these optimization strategies by comparing the benchmark and optimiz
Exascale computing will feature novel and potentially disruptive hardware architectures. Exploiting these to their full potential is non-trivial. Numerical modelling frameworks involving finite difference methods are currently limited by the static n ature of the hand-coded discretisation schemes and repeatedly may have to be re-written to run efficiently on new hardware. In contrast, OpenSBLI uses code generation to derive the models code from a high-level specification. Users focus on the equations to solve, whilst not concerning themselves with the detailed implementation. Source-to-source translation is used to tailor the code and enable its execution on a variety of hardware.
Performance tests and analyses are critical to effective HPC software development and are central components in the design and implementation of computational algorithms for achieving faster simulations on existing and future computing architectures for large-scale application problems. In this paper, we explore performance and space-time trade-offs for important compute-intensive kernels of large-scale numerical solvers for PDEs that govern a wide range of physical applications. We consider a sequence of PDE- motivated bake-off problems designed to establish best practices for efficient high-order simulations across a variety of codes and platforms. We measure peak performance (degrees of freedom per second) on a fixed number of nodes and identify effective code optimization strategies for each architecture. In addition to peak performance, we identify the minimum time to solution at 80% parallel efficiency. The performance analysis is based on spectral and p-type finite elements but is equally applicable to a broad spectrum of numerical PDE discretizations, including finite difference, finite volume, and h-type finite elements.
60 - Elmar Peise 2017
This dissertation introduces measurement-based performance modeling and prediction techniques for dense linear algebra algorithms. As a core principle, these techniques avoid executions of such algorithms entirely, and instead predict their performan ce through runtime estimates for the underlying compute kernels. For a variety of operations, these predictions allow to quickly select the fastest algorithm configurations from available alternatives. We consider two scenarios that cover a wide range of computations: To predict the performance of blocked algorithms, we design algorithm-independent performance models for kernel operations that are generated automatically once per platform. For various matrix operations, instantaneous predictions based on such models both accurately identify the fastest algorithm, and select a near-optimal block size. For performance predictions of BLAS-based tensor contractions, we propose cache-aware micro-benchmarks that take advantage of the highly regular structure inherent to contraction algorithms. At merely a fraction of a contractions runtime, predictions based on such micro-benchmarks identify the fastest combination of tensor traversal and compute kernel.
Many cloud service providers (CSPs) provide on-demand service at a price with a small delay. We propose a QoS-differentiated model where multiple SLAs deliver both on-demand service for latency-critical users and delayed services for delay-tolerant u sers at lower prices. Two architectures are considered to fulfill SLAs. The first is based on priority queues. The second simply separates servers into multiple modules, each for one SLA. As an ecosystem, we show that the proposed framework is dominant-strategy incentive compatible. Although the first architecture appears more prevalent in the literature, we prove the superiority of the second architecture, under which we further leverage queueing theory to determine the optimal SLA delays and prices. Finally, the viability of the proposed framework is validated through numerical comparison with the on-demand service and it exhibits a revenue improvement in excess of 200%. Our results can help CSPs design optimal delay-differentiated services and choose appropriate serving architectures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا