ترغب بنشر مسار تعليمي؟ اضغط هنا

The triple system AT Mic AB + AU Mic in the beta Pictoris Association

100   0   0.0 ( 0 )
 نشر من قبل Sergio Messina
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Equal-mass stars in young open clusters and loose associations exhibit a wide spread of rotation periods, which likely originates from differences in the initial rotation periods and in the primordial disc lifetimes. We want to explore if the gravitational effects by nearby companions may play an additional role in producing the observed rotation period spread. We measure the photometric rotation periods of components of multiple stellar systems and look for correlations of the period differences among the components to their reciprocal distances. In this paper, we analysed the triple system AU Mic + AT Mic A&B in the 25-Myr beta Pictoris Association. We have retrieved from the literature the rotation period of AU Mic (P = 4.85d) and measured from photometric archival data the rotation periods of both components of AT Mic (P = 1.19d and P = 0.78d) for the first time. Moreover, we detected a high rate of flare events from AT Mic. Whereas the distant component AU Mic has evolved rotationally as a single star, the A and B components of AT Mic, separated by about 27 AU, exhibit a rotation rate a factor 5 larger than AU Mic. Moreover, the A and B components, despite have about equal mass, show a significant difference (about 40%) between their rotation periods. A possible explanation is that the gravitational forces between the A and B components of AT Mic (that are a factor about 7.3 x 10^6 more intense than those between AU Mic and AT Mic) have enhanced the dispersal of the AT Mic primordial disc, shortening its lifetime and the disc-locking phase duration, making the component A and B of AT Mic to rotate faster than the more distant AU Mic. We suspect that a different level of magnetic activity between the A and B components of AT Mic may be the additional parameter responsible for the difference between their rotation periods.



قيم البحث

اقرأ أيضاً

We present high resolution near-infrared spectropolarimetric observations using the SPIRou instrument at CFHT during a transit of the recently detected young planet AU Mic b, with supporting spectroscopic data from iSHELL at IRTF. We detect Zeeman si gnatures in the Stokes V profiles, and measure a mean longitudinal magnetic field of $overline{B}_ell=46.3pm0.7$~G. Rotationally modulated magnetic spots likely cause long-term variations of the field with a slope of $d{B_ell}/dt=-108.7pm7.7$~G/d. We apply the cross-correlation technique to measure line profiles and obtain radial velocities through CCF template matching. We find an empirical linear relationship between radial velocity and $B_ell$, which allows us to estimate the radial velocity variations which stellar activity induces through rotational modulation of spots for the five hours of continuous monitoring of AU Mic with SPIRou. We model the corrected radial velocities for the classical Rossiter-McLaughlin effect, using MCMC to sample the posterior distribution of the model parameters. This analysis shows that the orbit of AU Mic b is prograde and aligned with the stellar rotation axis with a sky-projected spin-orbit obliquity of $lambda=0^{+18}_{-15}$ degrees. The aligned orbit of AU Mic b indicates that it formed in the protoplanetary disk that evolved to the current debris disk around AU Mic.
We present imaging observations at 1.3 millimeters of the debris disk surrounding the nearby M-type flare star AU Mic with beam size 3 arcsec (30 AU) from the Submillimeter Array. These data reveal a belt of thermal dust emission surrounding the star with the same edge-on geometry as the more extended scattered light disk detected at optical wavelengths. Simple modeling indicates a central radius of ~35 AU for the emission belt. This location is consistent with the reservoir of planetesimals previously invoked to explain the shape of the scattered light surface brightness profile through size-dependent dust dynamics. The identification of this belt further strengthens the kinship between the debris disks around AU Mic and its more massive sister star beta Pic, members of the same ~10 Myr-old moving group.
133 - S. Carolan 2020
Here, we study the dichotomy of the escaping atmosphere of the newly discovered close-in exoplanet AU Mic b. On one hand, the high EUV stellar flux is expected to cause a strong atmospheric escape in AU Mic b. On the other hand, the wind of this youn g star is believed to be very strong, which could reduce or even inhibit the planets atmospheric escape. AU Mic is thought to have a wind mass-loss rate that is up to $1000$ times larger than the solar wind mass-loss rate ($dot{M}_odot$). To investigate this dichotomy, we perform 3D hydrodynamics simulations of the stellar wind--planetary atmosphere interactions in the AU Mic system and predict the synthetic Ly-$alpha$ transits of AU Mic b. We systematically vary the stellar wind mass-loss rate from a `no wind scenario to up to a stellar wind with a mass-loss rate of $1000~dot{M}_odot$. We find that, as the stellar wind becomes stronger, the planetary evaporation rate decreases from $6.5times 10^{10}$ g/s to half this value. With a stronger stellar wind, the atmosphere is forced to occupy a smaller volume, affecting transit signatures. Our predicted Ly-$alpha$ absorption drops from $sim 20%$, in the case of `no wind to barely any Ly-$alpha$ absorption in the extreme stellar wind scenario. Future Ly-$alpha$ transits could therefore place constraints not only on the evaporation rate of AU Mic b, but also on the mass-loss rate of its host star.
We present far-infrared and submillimeter maps from the Herschel Space Observatory and the James Clerk Maxwell Telescope of the debris disk host star AU Microscopii. Disk emission is detected at 70, 160, 250, 350, 450, 500 and 850 micron. The disk is resolved at 70, 160 and 450 micron. In addition to the planetesimal belt, we detect thermal emission from AU Mics halo for the first time. In contrast to the scattered light images, no asymmetries are evident in the disk. The fractional luminosity of the disk is $3.9 times 10^{-4}$ and its mm-grain dust mass is 0.01 MEarth (+/- 20%). We create a simple spatial model that reconciles the disk SED as a blackbody of 53 +/- 2 K (a composite of 39 and 50 K components) and the presence of small (non-blackbody) grains which populate the extended halo. The best fit model is consistent with the birth ring model explored in earlier works, i.e., an edge-on dust belt extending from 8.8-40 AU, but with an additional halo component with an $r^{-1.5}$ surface density profile extending to the limits of sensitivity (140 AU). We confirm that AU Mic does not exert enough radiation force to blow out grains. For stellar mass loss rates of 10-100x solar, compact (zero porosity) grains can only be removed if they are very small, consistently with previous work, if the porosity is 0.9, then grains approaching 0.1 micron can be removed via corpuscular forces (i.e., the stellar wind).
AU Mic is a young, very active M dwarf star with a debris disk and at least one transiting Neptune-size planet. Here we present detailed analysis of the magnetic field of AU Mic based on previously unpublished high-resolution optical and near-infrare d spectropolarimetric observations. We report a systematic detection of circular and linear polarization signatures in the stellar photospheric lines. Tentative Zeeman Doppler imaging modeling of the former data suggests a non-axisymmetric global field with a surface-averaged strength of about 90 G. At the same time, linear polarization observations indicate the presence of a much stronger $approx$2 kG axisymmetric dipolar field, which contributes no circular polarization signal due to the equator-on orientation of AU Mic. A separate Zeeman broadening and intensification analysis allowed us to determine a mean field modulus of 2.3 and 2.1 kG from the Y- and K-band atomic lines respectively. These magnetic field measurements are essential for understanding environmental conditions within the AU Mic planetary system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا