ترغب بنشر مسار تعليمي؟ اضغط هنا

NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature

214   0   0.0 ( 0 )
 نشر من قبل Lixing You
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The fast development of superconducting nanowire single photon detector (SNSPD) in the past decade has enabled many advances in quantum information technology. The best system detection efficiency (SDE) record at 1550 nm wavelength was 93% obtained from SNSPD made of amorphous WSi which usually operated at sub-kelvin temperatures. We first demonstrate SNSPD made of polycrystalline NbN with SDE of 90.2% for 1550 nm wavelength at 2.1K, accessible with a compact cryocooler. The SDE saturated to 92.1% when the temperature was lowered to 1.8K. The results lighten the practical and high performance SNSPD to quantum information and other high-end applications.

قيم البحث

اقرأ أيضاً

Generally, a superconducting nanowire single-photon detector (SNSPD) is composed of wires with a typical width of ~100 nm. Recent studies have found that superconducting strips with a micrometer-scale width can also detect single photons. Compared wi th the SNSPD, the superconducting microstrip single-photon detector (SMSPD) has smaller kinetic inductance, higher working current, and lower requirement in fabrication accuracy, providing potential applications in the development of ultra-large active area detectors. However, the study on SMSPD is still in its infancy, and the realization of its high-performance and practical use remains an opening question. This study demonstrates a NbN SMSPD with a saturated system detection efficiency (SDE) of ~92.2% at a dark count rate of ~200 cps, a polarization sensitivity of ~1.03, and a minimum timing jitter of ~48 ps, at the telecom wavelength of 1550 nm when coupled with a single mode fiber and operated at 0.84 K. Furthermore, the detectors SDE is over 70% when operated at a 2.1-K closed-cycle cryocooler.
91 - W. J. Zhang , H. Li , L. X. You 2015
We develop single-photon detectors comprising single-mode fiber-coupled superconducting nanowires, with high system detection efficiencies at a wavelength of 940 nm. The detector comprises a 6.5-nm-thick, 110-nm-wide NbN nanowire meander fabricated o nto a Si substrate with a distributed Bragg reflector for enhancing the optical absorptance. We demonstrate that, via the design of a low filling factor (1/3) and active area ({Phi} = 10 {mu}m), the system reaches a detection efficiency of ~60% with a dark count rate of 10 Hz, a recovery time <12 ns, and a timing jitter of ~50 ps.
517 - Hao Li , Lu Zhang , Lixing You 2015
Satellite-ground quantum communication requires single-photon detectors of 850-nm wavelength with both high detection efficiency and large sensitive area. We developed superconducting nanowire single-photon detectors (SNSPDs) on one-dimensional photo nic crystals, which acted as optical cavities to enhance the optical absorption, with a sensitive-area diameter of 50 um. The fabricated multimode fiber coupled NbN SNSPDs exhibited a maximum system detection efficiency (DE) of up to 82% and a DE of 78% at a dark count rate of 100 Hz at 850-nm wavelength as well as a system jitter of 105 ps.
90 - J.J. Renema , R. Gaudio , Q. Wang 2016
We measure the maximal distance at which two absorbed photons can jointly trigger a detection event in NbN nanowire superconducting single photon detector (SSPD) microbridges by comparing the one-photon and two-photon efficiency of bridges of differe nt overall lengths, from 0 to 400 nm. We find a length of $23 pm 2$ nm. This value is in good agreement with to size of the quasiparticle cloud at the time of the detection event.
We investigate the operation of WSi superconducting nanowire single-photon detectors (SNSPDs) at 2.5 K, a temperature which is ~ 70 % of the superconducting transition temperature (TC) of 3.4 K. We demonstrate saturation of the system detection effic iency at 78 +- 2 % with a jitter of 191 ps. We find that the jitter at 2.5 K is limited by the noise of the readout, and can be improved through the use of cryogenic amplifiers. Operation of SNSPDs with high efficiency at temperatures very close to TC appears to be a unique property of amorphous WSi.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا