ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical Current Oscillations of Elliptical Josephson Junctions with Single-Domain Ferromagnetic Layers

137   0   0.0 ( 0 )
 نشر من قبل Joseph A. Glick
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Josephson junctions containing ferromagnetic layers are of considerable interest for the development of practical cryogenic memory and superconducting qubits. Such junctions exhibit a phase shift of $pi$ for certain ranges of ferromagnetic layer thickness. We present studies of Nb based micron-scale elliptically-shaped Josephson junctions containing ferromagnetic barriers of Ni$_{81}$Fe$_{19}$ or Ni$_{65}$Co$_{20}$Fe$_{15}$. By applying an external magnetic field, the critical current of the junctions are found to follow characteristic Fraunhofer patterns, and display sharp switching behavior suggestive of single-domain magnets. The high quality of the Fraunhofer patterns enables us to extract the maximum value of the critical current even when the peak is shifted significantly outside the range of the data due to the magnetic moment of the ferromagnetic layer. The maximum value of the critical current oscillates as a function of the ferromagnetic barrier thickness, indicating transitions in the phase difference across the junction between values of zero and $pi$. We compare the data to previous work and to models of the 0-$pi$ transitions based on existing theories.



قيم البحث

اقرأ أيضاً

We report magnetic and electrical measurements of Nb Josephson junctions with strongly ferromagnetic barriers of Co, Ni and Ni80Fe20 (Py). All these materials show multiple oscillations of critical current with barrier thickness implying repeated 0-p i phase-transitions in the superconducting order parameter. We show in particular that the Co barrier devices can be accurately modelled using existing clean limit theories and so that, despite the high exchange energy (309 meV), the large IcRN value in the pi-state means Co barriers are ideally suited to the practical development of superconducting pi-shift devices.
Josephson junctions with ferromagnetic layers are vital elements in a new class of cryogenic memory devices. One style of memory device contains a spin valve with one hard magnetic layer and one soft layer. To achieve low switching fields, it is adva ntageous for the soft layer to have low magnetization and low magnetocrystalline anisotropy. A candidate class of materials that fulfills these criteria is the Pd$_{1-x}$Fe$_{x}$ alloy system with low Fe concentrations. We present studies of micron-scale elliptically-shaped Josephson junctions containing Pd$_{97}$Fe$_{3}$ layers of varying thickness. By applying an external magnetic field, the critical current of the junctions are found to follow characteristic Fraunhofer patterns. The maximum value of the critical current, extracted from the Fraunhofer patterns, oscillates as a function of the ferromagnetic barrier thickness, indicating transitions in the phase difference across the junction between values of zero and $pi$.
Josephson junctions containing three ferromagnetic layers with non-collinear magnetizations between adjacent layers carry spin-triplet supercurrent under certain conditions. The signature of the spin-triplet supercurrent is a relatively slow decay of the maximum supercurrent as a function of the thickness of the middle ferromagnetic layer. In this work we focus on junctions where the middle magnetic layer is a [Co/Pd]$_N$ multilayer with perpendicular magnetic anisotropy (PMA), while the outer two layers have in-plane anisotropy. We compare junctions where the middle PMA layer is or is not configured as a synthetic antiferromagnet (PMA-SAF). We find that the supercurrent decays much more rapidly with increasing the number $N$ of [Co/Pd] bilayers in the PMA-SAF junctions compared to the PMA junctions. Similar behavior is observed in junctions containing [Co/Ni]$_N$ PMA multilayers. We model that behavior by assuming that each Co/Pd or Co/Ni interface acts as a partial spin filter, so that the spin-triplet supercurrent in the PMA junctions becomes more strongly spin-polarized as $N$ increases while the supercurrent in the PMA-SAF junctions is suppressed with increasing $N$. We also address a question raised in a previous work regarding how much spin-singlet supercurrent is transmitted through our nominally spin-triplet junctions. We do that by comparing spin-triplet junctions with similar junctions where the order of the magnetic layers has been shuffled. The results of this work are expected to be helpful in designing spin-triplet Josephson junctions for use in cryogenic memory.
Using the Usadel equation approach, we provide a compact formalism to calculate the critical current density of 21 different types of ferromagnetic (F) Josephson junctions containing insulating (I) and normal metal (N) layers in the weak link regions . In particular, we obtain that even a thin additional N layer may shift the 0-$pi$ transitions to larger or smaller values of the thickness $d_F$ of the ferromagnet, depending on its conducting properties. For certain values of $d_F$, a 0-$pi$ transition can even be achieved by changing only the N layer thickness. We use our model to fit experimental data of SIFS and SINFS tunnel junctions, where S is a superconducting electrode.
We present a quantitative study of the current-voltage characteristics (CVC) of diffusive superconductor/ insulator/ ferromagnet/ superconductor (SIFS) tunnel Josephson junctions. In order to obtain the CVC we calculate the density of states (DOS) in the F/S bilayer for arbitrary length of the ferromagnetic layer, using quasiclassical theory. For a ferromagnetic layer thickness larger than the characteristic penetration depth of the superconducting condensate into the F layer, we find an analytical expression which agrees with the DOS obtained from a self-consistent numerical method. We discuss general properties of the DOS and its dependence on the parameters of the ferromagnetic layer. In particular we focus our analysis on the DOS oscillations at the Fermi energy. Using the numerically obtained DOS we calculate the corresponding CVC and discuss their properties. Finally, we use CVC to calculate the macroscopic quantum tunneling (MQT) escape rate for the current biased SIFS junctions by taking into account the dissipative correction due to the quasiparticle tunneling. We show that the influence of the quasiparticle dissipation on the macroscopic quantum dynamics of SIFS junctions is small, which is an advantage of SIFS junctions for superconducting qubits applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا