ﻻ يوجد ملخص باللغة العربية
Josephson junctions containing ferromagnetic layers are of considerable interest for the development of practical cryogenic memory and superconducting qubits. Such junctions exhibit a phase shift of $pi$ for certain ranges of ferromagnetic layer thickness. We present studies of Nb based micron-scale elliptically-shaped Josephson junctions containing ferromagnetic barriers of Ni$_{81}$Fe$_{19}$ or Ni$_{65}$Co$_{20}$Fe$_{15}$. By applying an external magnetic field, the critical current of the junctions are found to follow characteristic Fraunhofer patterns, and display sharp switching behavior suggestive of single-domain magnets. The high quality of the Fraunhofer patterns enables us to extract the maximum value of the critical current even when the peak is shifted significantly outside the range of the data due to the magnetic moment of the ferromagnetic layer. The maximum value of the critical current oscillates as a function of the ferromagnetic barrier thickness, indicating transitions in the phase difference across the junction between values of zero and $pi$. We compare the data to previous work and to models of the 0-$pi$ transitions based on existing theories.
We report magnetic and electrical measurements of Nb Josephson junctions with strongly ferromagnetic barriers of Co, Ni and Ni80Fe20 (Py). All these materials show multiple oscillations of critical current with barrier thickness implying repeated 0-p
Josephson junctions with ferromagnetic layers are vital elements in a new class of cryogenic memory devices. One style of memory device contains a spin valve with one hard magnetic layer and one soft layer. To achieve low switching fields, it is adva
Josephson junctions containing three ferromagnetic layers with non-collinear magnetizations between adjacent layers carry spin-triplet supercurrent under certain conditions. The signature of the spin-triplet supercurrent is a relatively slow decay of
Using the Usadel equation approach, we provide a compact formalism to calculate the critical current density of 21 different types of ferromagnetic (F) Josephson junctions containing insulating (I) and normal metal (N) layers in the weak link regions
We present a quantitative study of the current-voltage characteristics (CVC) of diffusive superconductor/ insulator/ ferromagnet/ superconductor (SIFS) tunnel Josephson junctions. In order to obtain the CVC we calculate the density of states (DOS) in