ترغب بنشر مسار تعليمي؟ اضغط هنا

IBIC analysis of CdTe/CdS solar cells

92   0   0.0 ( 0 )
 نشر من قبل Paolo Olivero
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper reports on the investigation of the electronic properties of a thin film CdS/CdTe solar cell with the Ion Beam Induced Charge (IBIC) technique. The device under test is a thin film (total thickness around 10 um) multilayer heterojunction solar cell, displaying an efficiency of 14% under AM1.5 illumination conditions. The IBIC measurements were carried out using focused 3.150 MeV He ions raster scanned onto the surface of the back electrode. The charge collection efficiency (CCE) maps show inhomogeneous response of the cell to be attributed to the polycrystalline nature of the CdTe bulk material. Finally, the evolution of the IBIC signal vs. the ion fluence was studied in order to evaluate the radiation hardness of the CdS/CdTe solar cells in view of their use in solar modules for space applications.



قيم البحث

اقرأ أيضاً

This paper describes both an experimental methodology based on the Ion Beam Induced Charge (IBIC) technique and the relevant interpretative model, which were adopted to characterize the electronic features of power diodes. IBIC spectra were acquired using different proton energies (from 1.2 to 2.0 MeV), angles of incidence, and applied bias voltages. The modulation of the ion probe range, combined with the modulation of the extensions of the depletion layer, allowed the charge collection efficiency scale to be accurately calibrated, the dead layer beneath the thick (6 micrometer) Al electrode and the minority carrier lifetime to be measured. The analysis was performed by using a simplified model extracted from the basic IBIC theory, which proved to be suitable to interpret the behaviour of the IBIC spectra as a function of all the experimental conditions and to characterize the devices, both for what concerns the electrostatics and the recombination processes.
In terms of mixing graded TiO2 and SnO2 powders by solid-state reaction method, ITO was prepared. Using electron beam gun technology, ITO films with different thicknesses were prepared. The influence of film thickness on structure, electrical and opt ical properties was studied. The XRD patterns were utilized to determine the structural parameters (lattice strain and crystallite size) of ITO with different thicknesses. It is observed that the average crystallite size increases as the film thickness increases, but the lattice strain decreases. SEM shows that as the film thickness increases, the grain size of ITO increases and improves. The electrical properties of ITO films with different thicknesses were measured by the standard four-point probe method. It can be seen that as the thickness of the ITO film increases from 75 nm to 325 nm, the resistivity decreases from 29x10^-4 Ohm/cm to 1.65x10^-4 Ohm/cm. This means that ITO films with lower electrical properties will be more suitable for high-efficiency CdTe solar cells. Three optical layer models (adhesive layer of the substrate/B-spline layer of ITO film/surface roughness layer) are used to calculate the film thickness with high-precision ellipsometry. In the higher T(lambda) and R(lambda) absorption regions, the absorption coefficient is determined to calculate the optical energy gap, which increases from 3.56 eV to 3.69 eV. Finally, the effects of ITO layers of various thicknesses on the performance of CdS/CdTe solar cells are also studied. When the thickness of the ITO window layer is 325 nm, Voc = 0.82 V, Jsc = 17 mA/cm2, and FF = 57.4%, the highest power conversion efficiency (PCE) is 8.6%.
The transport properties of a 4H-SiC Schottky diode have been investigated by the Ion Beam Induced Charge (IBIC) technique in lateral geometry through the analysis of the charge collection efficiency (CCE) profile at a fixed applied reverse bias volt age. The cross section of the sample orthogonal to the electrodes was irradiated by a rarefied 4 MeV proton microbeam and the charge pulses have been recorded as function of incident proton position with a spatial resolution of 2 um. The CCE profile shows a broad plateau with CCE values close to 100% occurring at the depletion layer, whereas in the neutral region, the exponentially decreasing profile indicates the dominant role played by the diffusion transport mechanism. Mapping of charge pulses was accomplished by a novel computational approach, which consists in mapping the Gunns weighting potential by solving the electrostatic problem by finite element method and hence evaluating the induced charge at the sensing electrode by a Monte Carlo method. The combination of these two computational methods enabled an exhaustive interpretation of the experimental profiles and allowed an accurate evaluation both of the electrical characteristics of the active region (e.g. electric field profiles) and of basic transport parameters (i. e. diffusion length and minority carrier lifetime).
In order to evaluate the charge collection efficiency (CCE) profile of single-crystal diamond devices based on a p type/intrinsic/metal configuration, a lateral Ion Beam Induced Charge (IBIC) analysis was performed over their cleaved cross sections u sing a 2 MeV proton microbeam. CCE profiles in the depth direction were extracted from the cross-sectional maps at variable bias voltage. IBIC spectra relevant to the depletion region extending beneath the frontal Schottky electrode show a 100% CCE, with a spectral resolution of about 1.5%. The dependence of the width of the high efficiency region from applied bias voltage allows the constant residual doping concentration of the active region to be evaluated. The region where the electric field is absent shows an exponentially decreasing CCE profile, from which it is possible to estimate the diffusion length of the minority carriers by means of a drift-diffusion model.
Triple junction (InGaP/GaAs/Ge) and single junction (SJ) solar cells were irradiated with electrons, protons and neutrons. The degradation of remaining factors was analyzed as function of the induced Displacement Damage Dose (DDD) calculated by means of the SR-NIEL (Screened Relativistic Non Ionizing Energy Loss) approach. In particular, the aim of this work is to analyze the variation of the solar cells remaining factors due to neutron irradiation with respect to those previously obtained with electrons and protons. The current analysis confirms that the degradation of the $P_{max}$ electrical parameter is related by means of the usual semi-empirical expression to the displacement dose, independently of type of the incoming particle. $I_{sc}$ and $V_{oc}$ parameters were also measured as a function of the displacement damage dose. Furthermore, a DLTS analysis was carried out on diodes - with the same epitaxial structure as the middle sub-cell - irradiated with neutrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا