ﻻ يوجد ملخص باللغة العربية
Let $Z$ be the typical cell of a stationary Poisson hyperplane tessellation in $mathbb{R}^d$. The distribution of the number of facets $f(Z)$ of the typical cell is investigated. It is shown, that under a well-spread condition on the directional distribution, the quantity $n^{frac{2}{d-1}}sqrt[n]{mathbb{P}(f(Z)=n)}$ is bounded from above and from below. When $f(Z)$ is large, the isoperimetric ratio of $Z$ is bounded away from zero with high probability. These results rely on one hand on the Complementary Theorem which provides a precise decomposition of the distribution of $Z$ and on the other hand on several geometric estimates related to the approximation of polytopes by polytopes with fewer facets. From the asymptotics of the distribution of $f(Z)$, tail estimates for the so-called $Phi$ content of $Z$ are derived as well as results on the conditional distribution of $Z$ when its $Phi$ content is large.
Let $X$ be the mosaic generated by a stationary Poisson hyperplane process $hat X$ in ${mathbb R}^d$. Under some mild conditions on the spherical directional distribution of $hat X$ (which are satisfied, for example, if the process is isotropic), we
The typical cell of a Voronoi tessellation generated by $n+1$ uniformly distributed random points on the $d$-dimensional unit sphere $mathbb S^d$ is studied. Its $f$-vector is identified in distribution with the $f$-vector of a beta polytope generate
A homogeneous Poisson-Voronoi tessellation of intensity $gamma$ is observed in a convex body $W$. We associate to each cell of the tessellation two characteristic radii: the inradius, i.e. the radius of the largest ball centered at the nucleus and in
Slicing a Voronoi tessellation in $mathbb{R}^n$ with a $k$-plane gives a $k$-dimensional weighted Voronoi tessellation, also known as power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of
Poisson processes in the space of $(d-1)$-dimensional totally geodesic subspaces (hyperplanes) in a $d$-dimensional hyperbolic space of constant curvature $-1$ are studied. The $k$-dimensional Hausdorff measure of their $k$-skeleton is considered. Ex