ﻻ يوجد ملخص باللغة العربية
A homogeneous Poisson-Voronoi tessellation of intensity $gamma$ is observed in a convex body $W$. We associate to each cell of the tessellation two characteristic radii: the inradius, i.e. the radius of the largest ball centered at the nucleus and included in the cell, and the circumscribed radius, i.e. the radius of the smallest ball centered at the nucleus and containing the cell. We investigate the maximum and minimum of these two radii over all cells with nucleus in $W$. We prove that when $gammarightarrowinfty$, these four quantities converge to Gumbel or Weibull distributions up to a rescaling. Moreover, the contribution of boundary cells is shown to be negligible. Such approach is motivated by the analysis of the global regularity of the tessellation. In particular, consequences of our study include the convergence to the simplex shape of the cell with smallest circumscribed radius and an upper-bound for the Hausdorff distance between $W$ and its so-called Poisson-Voronoi approximation.
The typical cell of a Voronoi tessellation generated by $n+1$ uniformly distributed random points on the $d$-dimensional unit sphere $mathbb S^d$ is studied. Its $f$-vector is identified in distribution with the $f$-vector of a beta polytope generate
Let $Z$ be the typical cell of a stationary Poisson hyperplane tessellation in $mathbb{R}^d$. The distribution of the number of facets $f(Z)$ of the typical cell is investigated. It is shown, that under a well-spread condition on the directional dist
In this paper, we consider a Riemannian manifold $M$ and the Poisson-Voronoi tessellation generated by the union of a fixed point $x_0$ and a Poisson point process of intensity $lambda$ on $M$. We obtain asymptotic expansions up to the second order f
We present a new open source code for massive parallel computation of Voronoi tessellations(VT hereafter) in large data sets. The code is focused for astrophysical purposes where VT densities and neighbors are widely used. There are several serial Vo
In this paper, we construct a new family of random series defined on $R^D$, indexed by one scaling parameter and two Hurst-like exponents. The model is close to Takagi-Knopp functions, save for the fact that the underlying partitions of $R^D$ are not