ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical properties of the Rabi model

53   0   0.0 ( 0 )
 نشر من قبل Gao Xianlong
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the dynamical properties of the quantum Rabi model within a systematic expansion method. Based on the observation that the parity symmetry of the Rabi model is kept during the evolution of the states, we decompose the initial state and the time-dependent one into a part of a positive and a negative parity expanded by the superposition of the coherent states. The evolutions for the corresponding positive and the negative parity are obtained, where the expansion coefficients in the dynamical equations are known from the recurrence relation derived.



قيم البحث

اقرأ أيضاً

Using Hills determinant method we show that the set of Judds solutions is only a subset of all the eigenvalues with the form $E_n=nomega-g^2/omega$ in the spectrum of the Rabi model. Therefore Braaks solution of the quantum Rabi model is not complete.
We study the geometric curvature and phase of the Rabi model. Under the rotating-wave approximation (RWA), we apply the gauge independent Berry curvature over a surface integral to calculate the Berry phase of the eigenstates for both single and two- qubit systems, which is found to be identical with the system of spin-1/2 particle in a magnetic field. We extend the idea to define a vacuum-induced geometric curvature when the system starts from an initial state with pure vacuum bosonic field. The induced geometric phase is related to the average photon number in a period which is possible to measure in the qubit-cavity system. We also calculate the geometric phase beyond the RWA and find an anomalous sudden change, which implies the breakdown of the adiabatic theorem and the Berry phases in an adiabatic cyclic evolution are ill-defined near the anti-crossing point in the spectrum.
We demonstrate the emergence of selective $k$-photon interactions in the strong and ultrastrong coupling regimes of the quantum Rabi model with a Stark coupling term. In particular, we show that the interplay between the rotating and counter-rotating terms produces multi-photon interactions whose resonance frequencies depend, due to the Stark term, on the state of the bosonic mode. We develop an analytical framework to explain these $k$-photon interactions by using time-dependent perturbation theory. Finally, we propose a method to achieve the quantum simulation of the quantum Rabi model with a Stark term by using the internal and vibrational degrees of freedom of a trapped ion, and demonstrate its performance with numerical simulations considering realistic physical parameters.
The isoenergetic cycle is a purely mechanical cycle comprised of adabatic and isoenergetic processes. In the latter the system interacts with an energy bath keeping constant the expectation value of the Hamiltonian. This cycle has been mostly studied in systems consisting of particles confined in a power-law trap. In this work we study the performance of the isoenergetic cycle for a system described by the quantum Rabi model for the case of controlling the coupling strength parameter, the resonator frequency and the two-level system frequency. For the cases of controlling either the coupling strength parameter or the resonator frequency, we find that it is possible to reach maximal unit efficiency when the parameter is sufficiently increased in the first adiabatic stage. In addition, for the first two cases the maximal work extracted is obtained at parameter values corresponding to high efficiency which constitutes an improvement over current proposals of this cycle.
We discuss the equilibrium and out of equilibrium dynamics of cavity QED in presence of dissipation beyond the standard perturbative treatment of losses. Using the dynamical polaron emph{ansatz} and Matrix Product State simulations, we discuss the ca se where both light-matter $g$-coupling and system-bath interaction are in the ultrastrong coupling regime. We provide a critical $g$ for the onset of Rabi oscillations. Besides, we demonstrate that the qubit is emph{dressed} by the cavity and dissipation. That such dressing governs the dynamics and, thus, it can be measured. Finally, we sketch an implementation for our theoretical ideas within circuit QED technology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا