ﻻ يوجد ملخص باللغة العربية
Supersymmetrical (SUSY) intertwining relations are generalized to the case of quantum Hamiltonians in Minkowski space. For intertwining operators (supercharges) of second order in derivatives the intertwined Hamiltonians correspond to completely integrable systems with the symmetry operators of fourth order in momenta. In terms of components, the itertwining relations correspond to the system of nonlinear differential equations which are solvable with the simplest - constant - ansatzes for the metric matrix in second order part of the supercharges. The corresponding potentials are built explicitly both for diagonalizable and nondiagonalizable form of metric matrices, and their properties are discussed.
We revisit the notion of quantum Lie algebra of symmetries of a noncommutative spacetime, its elements are shown to be the generators of infinitesimal transformations and are naturally identified with physical observables. Wave equations on noncommut
It is commonly known that the Fokker-Planck equation is exactly solvable only for some particular systems, usually with time-independent drift coefficients. To extend the class of solvable problems, we use the intertwining relations of SUSY Quantum M
CFTs in Euclidean signature satisfy well-accepted rules, such as the convergent Euclidean OPE. It is nowadays common to assume that CFT correlators exist and have various properties also in Lorentzian signature. Some of these properties may represent
Supermanifolds provide a very natural ground to understand and handle supersymmetry from a geometric point of view; supersymmetry in $d=3,4,6$ and $10$ dimensions is also deeply related to the normed division algebras. In this paper we want to show
We construct a non-commutative kappa-Minkowski deformation of U(1) gauge theory, following a general approach, recently proposed in JHEP 2008 (2020) 041. We obtain an exact (all orders in the non-commutativity parameter) expression for both the defor