ترغب بنشر مسار تعليمي؟ اضغط هنا

$k$-Minkowski-deformation of $U(1)$ gauge theory

130   0   0.0 ( 0 )
 نشر من قبل Vladislav Kupriyanov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct a non-commutative kappa-Minkowski deformation of U(1) gauge theory, following a general approach, recently proposed in JHEP 2008 (2020) 041. We obtain an exact (all orders in the non-commutativity parameter) expression for both the deformed gauge transformations and the deformed field strength, which is covariant under these transformations. The corresponding Yang-Mills Lagrangian is gauge covariant and reproduces the Maxwell Lagrangian in the commutative limit. Gauge invariance of the action functional requires a non-trivial integration measure which, in the commutative limit, does not reduce to the trivial one. We discuss the physical meaning of such a nontrivial commutative limit, relating it to a nontrivial space-time curvature of the undeformed theory. Moreover, we propose a rescaled kappa-Minkowski non-commutative structure, which exhibits a standard flat commutative limit.



قيم البحث

اقرأ أيضاً

Strings in $mathcal{N}=2$ supersymmetric ${rm U}(1)^N$ gauge theories with $N$ hypermultiplets are studied in the generic setting of an arbitrary Fayet-Iliopoulos triplet of parameters for each gauge group and an invertible charge matrix. Although th e string tension is generically of a square-root form, it turns out that all existing BPS (Bogomolnyi-Prasad-Sommerfield) solutions have a tension which is linear in the magnetic fluxes, which in turn are linearly related to the winding numbers. The main result is a series of theorems establishing three different kinds of solutions of the so-called constraint equations, which can be pictured as orthogonal directions to the magnetic flux in ${rm SU}(2)_R$ space. We further prove for all cases, that a seemingly vanishing Bogomolnyi bound cannot have solutions. Finally, we write down the most general vortex equations in both master form and Taubes-like form. Remarkably, the final vortex equations essentially look Abelian in the sense that there is no trace of the ${rm SU}(2)_R$ symmetry in the equations, after the constraint equations have been solved.
We revisit the notion of quantum Lie algebra of symmetries of a noncommutative spacetime, its elements are shown to be the generators of infinitesimal transformations and are naturally identified with physical observables. Wave equations on noncommut ative spaces are derived from a quantum Hodge star operator. This general noncommutative geometry construction is then exemplified in the case of k-Minkowski spacetime. The corresponding quantum Poincare-Weyl Lie algebra of infinitesimal translations, rotations and dilatations is obtained. The dAlembert wave operator coincides with the quadratic Casimir of quantum translations and it is deformed as in Deformed Special Relativity theories. Also momenta (infinitesimal quantum translations) are deformed, and correspondingly the Einstein-Planck relation and the de Broglie one. The energy-momentum relations (dispersion relations) are consequently deduced. These results complement those of the phenomenological literature on the subject.
386 - O.F. Dayi , K. Ulker , B. Yapiskan 2003
Parent actions for component fields are utilized to derive the dual of supersymmetric U(1) gauge theory in 4 dimensions. Generalization of the Seiberg-Witten map to the component fields of noncommutative supersymmetric U(1) gauge theory is analyzed. Through this transformation we proposed parent actions for noncommutative supersymmetric U(1) gauge theory as generalization of the ordinary case.Duals of noncommutative supersymmetric U(1) gauge theory are obtained. Duality symmetry under the interchange of fields with duals accompanied by the replacement of the noncommutativity parameter Theta_{mu u} with tilde{Theta}_{mu u} = epsilon_{mu urhosigma}Theta^{rhosigma} of the non--supersymmetric case is broken at the level of actions. We proposed a noncommutative parent action for the component fields which generates actions possessing this duality symmetry.
126 - A. Pinzul , A. Stern 2007
The choice of a star product realization for noncommutative field theory can be regarded as a gauge choice in the space of all equivalent star products. With the goal of having a gauge invariant treatment, we develop tools, such as integration measur es and covariant derivatives on this space. The covariant derivative can be expressed in terms of connections in the usual way giving rise to new degrees of freedom for noncommutative theories.
74 - Frank Ferrari 2020
We formulate the most general gravitational models with constant negative curvature (hyperbolic gravity) on an arbitrary orientable two-dimensional surface of genus $g$ with $b$ circle boundaries in terms of a $text{PSL}(2,mathbb R)_partial$ gauge th eory of flat connections. This includes the usual JT gravity with Dirichlet boundary conditions for the dilaton field as a special case. A key ingredient is to realize that the correct gauge group is not the full $text{PSL}(2,mathbb R)$, but a subgroup $text{PSL}(2,mathbb R)_{partial}$ of gauge transformations that go to $text{U}(1)$ local rotations on the boundary. We find four possible classes of boundary conditions, with associated boundary terms, that can be applied to each boundary component independently. Class I has five inequivalent variants, corresponding to geodesic boundaries of fixed length, cusps, conical defects of fixed angle or large cylinder-shaped asymptotic regions with boundaries of fixed lengths and extrinsic curvatures one or greater than one. Class II precisely reproduces the usual JT gravity. In particular, the crucial extrinsic curvature boundary term of the usual second order formulation is automatically generated by the gauge theory boundary term. Class III is a more exotic possibility for which the integrated extrinsic curvature is fixed on the boundary. Class IV is the Legendre transform of class II; the constraint of fixed length is replaced by a boundary cosmological constant term.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا