ﻻ يوجد ملخص باللغة العربية
We present the results of near-infrared (2.5--5.4um) long-slit spectroscopy of the extended green object (EGO) G318.05+0.09 with AKARI. Two distinct sources are found in the slit. The brighter source has strong red continuum emission with H2O ice, CO2 ice, and CO gas and ice absorption features at 3.0, 4.25um, 4.67um, respectively, while the other greenish object shows peculiar emission that has double peaks at around 4.5 and 4.7um. The former source is located close to the ultra compact HII region IRAS 14498-5856 and is identified as an embedded massive young stellar object. The spectrum of the latter source can be interpreted by blue-shifted (-3000 ~ -6000km/s) optically-thin emission of the fundamental ro-vibrational transitions (v=1-0) of CO molecules with temperatures of 12000--3700K without noticeable H2 and HI emission. We discuss the nature of this source in terms of outflow associated with the young stellar object and supernova ejecta associated with a supernova remnant.
We present high-resolution spectroscopy of gaseous CO absorption in the fundamental ro-vibrational band toward the heavily obscured active galactic nucleus (AGN) IRAS 08572+3915. We have detected absorption lines up to highly excited rotational level
We present observations of ro-vibrational OH and CO emission from the Herbig Be star HD 100546. The emission from both molecules arises from the inner region of the disk extending from approximately 13 AU from the central star. The velocity profiles
HD 141569 is a Herbig Ae/Be star that straddles the boundary between the transition disks and debris disks. It is a low dust mass disk that reveals numerous structural elements (e.g. gaps and rings) that may point to young planets. It also exhibits a
We present new far-infrared (FIR) images of the edge-on starburst galaxy NGC253 obtained with the Far-Infrared Surveyor (FIS) onboard AKARI at wavelengths of 90 um and 140 um. We have clearly detected FIR dust emission extended in the halo of the gal
Aims. We investigate the properties of hydrocarbon grains in the galactic superwind of M 82. Methods. With AKARI, we performed near-infrared (2.5 - 4.5 um) spectroscopic observations of 34 regions in M 82 including its northern and southern halos. Re