ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Resolution Near Infrared Spectroscopy of HD 100546: I. Analysis of Asymmetric Ro-Vibrational OH Emission Lines

287   0   0.0 ( 0 )
 نشر من قبل Joseph Liskowsky
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observations of ro-vibrational OH and CO emission from the Herbig Be star HD 100546. The emission from both molecules arises from the inner region of the disk extending from approximately 13 AU from the central star. The velocity profiles of the OH lines are narrower than the velocity profile of the [O I] 6300 Angstrom line indicating that the OH in the disk is not cospatial with the O I. This suggests that the inner optically thin region of the disk is largely devoid of molecular gas. Unlike the ro-vibrational CO emission lines, the OH lines are highly asymmetric. We show that the average CO and average OH line profiles can be fit with a model of a disk comprised of an eccentric inner wall and a circular outer disk. In this model, the vast majority of the OH flux (75%) originates from the inner wall, while the vast majority of the CO flux (65%) originates on the surface of the disk at radii greater than 13 AU. Eccentric inner disks are predicted by hydrodynamic simulations of circumstellar disks containing an embedded giant planet. We discuss the implications of such a disk geometry in light of models of planet disk tidal interactions and propose alternate explanations for the origin of the asymmetry.



قيم البحث

اقرأ أيضاً

209 - D. Fedele 2014
We present multi-epoch high-spectral resolution observations with VLT/CRIRES of the OH doublet $^2Pi_{3/2}$ P4.5 (1+,1-) (2.934 $mu$m) towards the protoplanetary disk around HD 100546. The OH doublet is detected at all epochs and is spectrally resolv ed while nearby H$_2$O lines remains undetected. The OH line velocity profile is different in the three datasets: in the first epoch (April 2012, PA=26$^{circ}$) the OH lines are symmetric and line broadening is consistent with the gas being in Keplerian rotation around the star. No OH emission is detected within a radius of 8-11 au from the star: the line emitting region is similar in size and extent to that of the CO ro-vibrational lines. In the other two epochs (March 2013 and April 2014, PA=90$^{circ}$ and 10$^{circ}$, respectively) the OH lines appear asymmetric and fainter compared to April 2012. We investigate the origin of these line asymmetries which were taken by previous authors as evidence for tidal interaction between an (unseen) massive planet and the disk. We show that the observed asymmetries can be fully explained by a misalignment of the slit of order 0farcs04-0farcs20 with respect to the stellar position. The disk is spatially resolved and the slit misalignment is likely caused by the extended dust emission which is brighter than the stellar photosphere at near-infrared wavelengths which is the wavelength used for the pointing. This can cause the photo-center of HD 100546 to be mis-aligned with the stellar position at near-infrared wavelengths.
We present observations of rovibrational CO in HD 100546 from four epochs spanning January 2003 through December 2010. We show that the equivalent widths of the CO lines vary during this time period with the v=1-0 CO lines brightening more than the U V fluoresced lines from the higher vibrational states. While the spectroastrometric signal of the hot band lines remains constant during this period, the spectroastrometric signal of the v=1--0 lines varies substantially. At all epochs, the spectroastrometric signals of the UV fluoresced lines are consistent with the signal one would expect from gas in an axisymmetric disk. In 2003, the spectroastrometric signal of the v=1-0 P26 line was symmetric and consistent with emission from an axisymmetric disk. However, in 2006, there was no spatial offset of the signal detected on the red side of the profile, and in 2010, the spectroastrometric offset was yet more strongly reduced toward zero velocity. A model is presented that can explain the evolution of the equivalent width of the v=1-0 P26 line and its spectroastrometric signal by adding to the system a compact source of CO emission that orbits the star near the inner edge of the disk. We hypothesize that such emission may arise from a circumplanetary disk orbiting a gas giant planet near the inner edge of the circumstellar disk. We discuss how this idea can be tested observationally and be distinguished from an alternative interpretation of random fluctuations in the disk emission.
HD~100546 is a Herbig Ae/Be star surrounded by a disk with a large central region that is cleared of gas and dust (i.e., an inner hole). High-resolution near-infrared spectroscopy reveals a rich emission spectrum of fundamental ro-vibrational CO emis sion lines whose time variable properties point to the presence of an orbiting companion within the hole. The Doppler shift and spectroastrometric signal of the CO v=1-0 P26 line, observed from 2003 to 2013, are consistent with a source of excess CO emission that orbits the star near the inner rim of the disk. The properties of the excess emission are consistent with those of a circumplanetary disk. In this paper, we report follow up observations that confirm our earlier prediction that the orbiting source of excess emission would disappear behind the near side of the inner rim of the outer disk in 2017. We find that while the hotband CO lines remained unchanged in 2017, the v=1-0 P26 line and its spectroastrometric signal returned to the profile observed in 2003. With these new observations, we further constrain the origin of the emission and discuss possible ways of confirming the presence of an orbiting planetary companion in the inner disk.
HD 141569 is a Herbig Ae/Be star that straddles the boundary between the transition disks and debris disks. It is a low dust mass disk that reveals numerous structural elements (e.g. gaps and rings) that may point to young planets. It also exhibits a reservoir of CO gas observed at both millimeter and IR wavelengths. Previous observations (Goto et al. 2006) reported a possible asymmetry in the CO gas emission. Herein the IR ro-vibrational emission lines are analyzed and modeled both spectroscopically and spectroastrometrically. We find emission features from both 12CO and 13CO isotopologues heated to a temperature of approximately 200 K in the radial extent of 13 to 60 au. We do not see evidenceof the previously reported asymmetry in CO emission, our results being consistent with a Keplerian, axisymmetric emitting region. This raises the question of whether the emission profile may be evolving in time, possibly as a result of an orbiting feature in the inner disk such as a planet.
We present a study of ro-vibrational OH and CO emission from 21 disks around Herbig Ae/Be stars. We find that the OH and CO luminosities are proportional over a wide range of stellar ultraviolet luminosities. The OH and CO line profiles are also simi lar, indicating that they arise from roughly the same radial region of the disk. The CO and OH emission are both correlated with the far-ultraviolet luminosity of the stars, while the PAH luminosity is correlated with the longer wavelength ultraviolet luminosity of the stars. Although disk flaring affects the PAH luminosity, it is not a factor in the luminosity of the OH and CO emission. These properties are consistent with models of UV-irradiated disk atmospheres. We also find that the transition disks in our sample, which have large optically thin inner regions, have lower OH and CO luminosities than non-transition disk sources with similar ultraviolet luminosities. This result, while tentative given the small sample size, is consistent with the interpretation that transition disks lack a gaseous disk close to the star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا