ﻻ يوجد ملخص باللغة العربية
We study the equivariant oriented cohomology ring $h_T(G/P)$ of partial flag varieties using the moment map approach. We define the right Hecke action on this cohomology ring, and then prove that the respective Bott-Samelson classes in $h_{T}(G/P)$ can be obtained by applying this action to the fundamental class of the identity point, hence generalizing previously known results by Brion, Knutson, Peterson, Tymoczko and others. We then focus on the equivariant oriented cohomology theory corresponding to the 2-parameter Todd genus. We give a new interpretation of Deodhars construction of the parabolic Kazhdan-Lusztig basis. Based on it, we define the parabolic Kazhdan-Lusztig (KL) Schubert classes independently of a reduced word. We make a positivity conjecture, and a conjecture about the relationship of such classes with smoothness of Schubert varieties. We then prove several special cases.
We study classes determined by the Kazhdan-Lusztig basis of the Hecke algebra in the $K$-theory and hyperbolic cohomology theory of flag varieties. We first show that, in $K$-theory, the two different choices of Kazhdan-Lusztig bases produce dual bas
Regular semisimple Hessenberg varieties are a family of subvarieties of the flag variety that arise in number theory, numerical analysis, representation theory, algebraic geometry, and combinatorics. We give a Giambelli formula expressing the classes
The equivariant Kazhdan-Lusztig polynomial of a matroid was introduced by Gedeon, Proudfoot, and Young. Gedeon conjectured an explicit formula for the equivariant Kazhdan-Lusztig polynomials of thagomizer matroids with an action of symmetric groups.
Expanding the classic works of Kazhdan-Lusztig and Deodhar, we establish bar involutions and canonical (i.e., quasi-parabolic KL) bases on quasi-permutation modules over the type B Hecke algebra, where the bases are parameterized by cosets of (possib
We formulate a general super duality conjecture on connections between parabolic categories O of modules over Lie superalgebras and Lie algebras of type A, based on a Fock space formalism of their Kazhdan-Lusztig theories which was initiated by Brund