ترغب بنشر مسار تعليمي؟ اضغط هنا

Parabolic Kazhdan-Lusztig basis, Schubert classes, and equivariant oriented cohomology

321   0   0.0 ( 0 )
 نشر من قبل Kirill Zainoulline
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the equivariant oriented cohomology ring $h_T(G/P)$ of partial flag varieties using the moment map approach. We define the right Hecke action on this cohomology ring, and then prove that the respective Bott-Samelson classes in $h_{T}(G/P)$ can be obtained by applying this action to the fundamental class of the identity point, hence generalizing previously known results by Brion, Knutson, Peterson, Tymoczko and others. We then focus on the equivariant oriented cohomology theory corresponding to the 2-parameter Todd genus. We give a new interpretation of Deodhars construction of the parabolic Kazhdan-Lusztig basis. Based on it, we define the parabolic Kazhdan-Lusztig (KL) Schubert classes independently of a reduced word. We make a positivity conjecture, and a conjecture about the relationship of such classes with smoothness of Schubert varieties. We then prove several special cases.

قيم البحث

اقرأ أيضاً

We study classes determined by the Kazhdan-Lusztig basis of the Hecke algebra in the $K$-theory and hyperbolic cohomology theory of flag varieties. We first show that, in $K$-theory, the two different choices of Kazhdan-Lusztig bases produce dual bas es, one of which can be interpreted as characteristic classes of the intersection homology mixed Hodge modules. In equivariant hyperbolic cohomology, we show that if the Schubert variety is smooth, then the class it determines coincides with the class of the Kazhdan-Lusztig basis; this was known as the Smoothness Conjecture. For Grassmannians, we prove that the classes of the Kazhdan-Lusztig basis coincide with the classes determined by Zelevinskys small resolutions. These properties of the so-called KL-Schubert basis show that it is the closest existing analogue to the Schubert basis for hyperbolic cohomology; the latter is a very useful testbed for more general elliptic cohomologies.
Regular semisimple Hessenberg varieties are a family of subvarieties of the flag variety that arise in number theory, numerical analysis, representation theory, algebraic geometry, and combinatorics. We give a Giambelli formula expressing the classes of regular semisimple Hessenberg varieties in terms of Chern classes. In fact, we show that the cohomology class of each regular semisimple Hessenberg variety is the specialization of a certain double Schubert polynomial, giving a natural geometric interpretation to such specializations. We also decompose such classes in terms of the Schubert basis for the cohomology ring of the flag variety. The coefficients obtained are nonnegative, and we give closed combinatorial formulas for the coefficients in many cases. We introduce a closely related family of schemes called regular nilpotent Hessenberg schemes, and use our results to determine when such schemes are reduced.
The equivariant Kazhdan-Lusztig polynomial of a matroid was introduced by Gedeon, Proudfoot, and Young. Gedeon conjectured an explicit formula for the equivariant Kazhdan-Lusztig polynomials of thagomizer matroids with an action of symmetric groups. In this paper, we discover a new formula for these polynomials which is related to the equivariant Kazhdan-Lusztig polynomials of uniform matroids. Based on our new formula, we confirm Gedeons conjecture by the Pieri rule.
Expanding the classic works of Kazhdan-Lusztig and Deodhar, we establish bar involutions and canonical (i.e., quasi-parabolic KL) bases on quasi-permutation modules over the type B Hecke algebra, where the bases are parameterized by cosets of (possib ly non-parabolic) reflection subgroups of the Weyl group of type B. We formulate an $imath$Schur duality between an $imath$quantum group of type AIII (allowing black nodes in its Satake diagram) and a Hecke algebra of type B acting on a tensor space, providing a common generalization of Jimbo-Schur duality and Bao-Wangs quasi-split $imath$Schur duality. The quasi-parabolic KL bases on quasi-permutation Hecke modules are shown to match with the $imath$canonical basis on the tensor space. An inversion formula for quasi-parabolic KL polynomials is established via the $imath$Schur duality.
We formulate a general super duality conjecture on connections between parabolic categories O of modules over Lie superalgebras and Lie algebras of type A, based on a Fock space formalism of their Kazhdan-Lusztig theories which was initiated by Brund an. We show that the Brundan-Kazhdan-Lusztig (BKL) polynomials for Lie superalgebra gl(m|n) in our parabolic setup can be identified with the usual parabolic Kazhdan-Lusztig polynomials. We establish some special cases of the BKL conjecture on the parabolic category O of gl(m|n)-modules and additional results which support the BKL conjecture and super duality conjecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا