ترغب بنشر مسار تعليمي؟ اضغط هنا

Brundan-Kazhdan-Lusztig and super duality conjectures

151   0   0.0 ( 0 )
 نشر من قبل Weiqiang Wang
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We formulate a general super duality conjecture on connections between parabolic categories O of modules over Lie superalgebras and Lie algebras of type A, based on a Fock space formalism of their Kazhdan-Lusztig theories which was initiated by Brundan. We show that the Brundan-Kazhdan-Lusztig (BKL) polynomials for Lie superalgebra gl(m|n) in our parabolic setup can be identified with the usual parabolic Kazhdan-Lusztig polynomials. We establish some special cases of the BKL conjecture on the parabolic category O of gl(m|n)-modules and additional results which support the BKL conjecture and super duality conjecture.



قيم البحث

اقرأ أيضاً

Expanding the classic works of Kazhdan-Lusztig and Deodhar, we establish bar involutions and canonical (i.e., quasi-parabolic KL) bases on quasi-permutation modules over the type B Hecke algebra, where the bases are parameterized by cosets of (possib ly non-parabolic) reflection subgroups of the Weyl group of type B. We formulate an $imath$Schur duality between an $imath$quantum group of type AIII (allowing black nodes in its Satake diagram) and a Hecke algebra of type B acting on a tensor space, providing a common generalization of Jimbo-Schur duality and Bao-Wangs quasi-split $imath$Schur duality. The quasi-parabolic KL bases on quasi-permutation Hecke modules are shown to match with the $imath$canonical basis on the tensor space. An inversion formula for quasi-parabolic KL polynomials is established via the $imath$Schur duality.
225 - Jae-Hoon Kwon 2016
Let $i$ be a reduced expression of the longest element in the Weyl group of type $A$, which is adapted to a Dynkin quiver with a single sink. We present a simple description of the crystal embedding of Young tableaux of arbitrary shape into $i$-Luszt ig data, which also gives an algorithm for the transition matrix between Lusztig data associated to reduced expressions adapted to quivers with a single sink.
298 - Zhiwei Yun 2020
We introduce the notion of minimal reduction type of an affine Springer fiber, and use it to define a map from the set of conjugacy classes in the Weyl group to the set of nilpotent orbits. We show that this map is the same as the one defined by Lusz tig, and that the Kazhdan-Lusztig map is a section of our map. This settles several conjectures in the literature. For classical groups, we prove more refined results by introducing and studying the ``skeleta of affine Springer fibers.
108 - Iva Halacheva 2020
The crystals for a finite-dimensional complex reductive Lie algebra $mathfrak{g}$ encode the structure of its representations, yet can also reveal surprising new structure of their own. We study the cactus group $C_{mathfrak{g}}$, constructed using t he Dynkin diagram of $mathfrak{g}$, and its combinatorial action on any $mathfrak{g}$-crystal via Sch{u}tzenberger involutions. We compare this action with that of the Berenstein-Kirillov group on Gelfand-Tsetlin patterns. Henriques and Kamnitzer define an action of $C_n=C_{mathfrak{gl}_n}$ on $n$-tensor products of $mathfrak{g}$-crystals, for any $mathfrak{g}$ as above. We discuss the crystal corresponding to the $mathfrak{gl}_n times mathfrak{gl}_m$-representation $Lambda^N(mathbb{C}^n otimes mathbb{C}^m),$ derive skew Howe duality on the crystal level and show that the two types of cactus group actions agree in this setting. A future application of this result is discussed in studying two families of maximal commutative subalgebras of the universal enveloping algebra, the shift of argument and Gaudin algebras, where an algebraically constructed monodromy action matches that of the cactus group.
We use geometry of the wonderful compactification to obtain a new proof of the relation between Deligne-Lusztig (or Alvis-Curtis) duality for $p$-adic groups and the homological duality. This provides a new way to introduce an involution on the set o f irreducible representations of the group which has been defined by A. Zelevinsky for $G=GL(n)$ by A.-M. Aubert in general (less direct geometric approaches to this duality have been developed earlier by Schneider-Stuhler and by the second author). As a byproduct we obtain a description of the Serre functor for representations of a p-adic group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا