ﻻ يوجد ملخص باللغة العربية
A {it weak selection} on $mathbb{R}$ is a function $f: [mathbb{R}]^2 to mathbb{R}$ such that $f({x,y}) in {x,y}$ for each ${x,y} in [mathbb{R}]^2$. In this article, we continue with the study (which was initiated in cite{ag}) of the outer measures $lambda_f$ on the real line $mathbb{R}$ defined by weak selections $f$. One of the main results is to show that $CH$ is equivalent to the existence of a weak selection $f$ for which: [ mathcal lambda_f(A)= begin{cases} 0 & text{if $|A| leq omega$,} infty & text{otherwise.} end{cases} ] Some conditions are given for a $sigma$-ideal of $mathbb{R}$ in order to be exactly the family $mathcal{N}_f$ of $lambda_f$-null subsets for some weak selection $f$. It is shown that there are $2^mathfrak{c}$ pairwise distinct ideals on $mathbb{R}$ of the form $mathcal{N}_f$, where $f$ is a weak selection. Also we prove that Martin Axiom implies the existence of a weak selection $f$ such that $mathcal{N}_f$ is exactly the $sigma$-ideal of meager subsets of $mathbb{R}$. Finally, we shall study pairs of weak selections which are almost equal but they have different families of $lambda_f$-measurable sets.
We show that an ideal $mathcal{I}$ on the positive integers is meager if and only if there exists a bounded nonconvergent real sequence $x$ such that the set of subsequences [resp. permutations] of $x$ which preserve the set of $mathcal{I}$-limit poi
It has been established by Inoue that a complex locally C*-algebra with a dense ideal posesses a bounded approximate identity which belonges to that ideal. It has been shown by Fritzsche that if a unital complex locally C*-algebra has an unbounded el
We establish a framework for the study of the effective theory of weak convergence of measures. We define two effective notions of weak convergence of measures on $mathbb{R}$: one uniform and one non-uniform. We show that these notions are equivalent
One of the main obstacle to study compactness in topological spaces via ideals was the definition of ideal convergence of subsequences as in the existing literature according to which subsequence of an ideal convergent sequence may fail to be ideal c
The notion of Haar null set was introduced by J. P. R. Christensen in 1973 and reintroduced in 1992 in the context of dynamical systems by Hunt, Sauer and Yorke. During the last twenty years this notion has been useful in studying exceptional sets in