ﻻ يوجد ملخص باللغة العربية
One of the main obstacle to study compactness in topological spaces via ideals was the definition of ideal convergence of subsequences as in the existing literature according to which subsequence of an ideal convergent sequence may fail to be ideal convergent with respect to same ideal. This obstacle has been get removed in this article and notions of I compactness as well as I star compactness of topological spaces have been introduced and studied to some extent. Involvement of I nonthin subsequences in the definition of I and I star compactness make them different from compactness even in metric spaces.
We show that an ideal $mathcal{I}$ on the positive integers is meager if and only if there exists a bounded nonconvergent real sequence $x$ such that the set of subsequences [resp. permutations] of $x$ which preserve the set of $mathcal{I}$-limit poi
We prove that the minimal left ideals of the superextension $lambda(Z)$ of the discrete group $Z$ of integers are metrizable topological semigroups, topologically isomorphic to minimal left ideals of the superextension $lambda(Z_2)$ of the compact group $Z_2$ of integer 2-adic numbers.
A {it weak selection} on $mathbb{R}$ is a function $f: [mathbb{R}]^2 to mathbb{R}$ such that $f({x,y}) in {x,y}$ for each ${x,y} in [mathbb{R}]^2$. In this article, we continue with the study (which was initiated in cite{ag}) of the outer measures $l
A proper ideal $I$ in a commutative ring with unity is called a $z^circ$-ideal if for each $a$ in $I$, the intersection of all minimal prime ideals in $R$ which contain $a$ is contained in $I$. For any totally ordered field $F$ and a completely $F$-r
For any ideal $mathcal{P}$ of closed sets in $X$, let $C_mathcal{P}(X)$ be the family of those functions in $C(X)$ whose support lie on $mathcal{P}$. Further let $C^mathcal{P}_infty(X)$ contain precisely those functions $f$ in $C(X)$ for which for ea