ﻻ يوجد ملخص باللغة العربية
We study the generation of strong large scale magnetic fields in dense quark matter. The magnetic field growth is owing to the magnetic field instability driven by the electroweak interaction of quarks. We discuss the situation when the chiral symmetry is unbroken in the degenerate quark matter. In this case we predict the amplification of the seed magnetic field $10^{12},text{G}$ to the strengths $(10^{14}-10^{15}),text{G}$. In our analysis we use the typical parameters of the quark matter in the core of a hybrid star or in a quark star. We also discuss the application of the obtained results to describe the magnetic fields generation in magnetars.
We simulate neutrino-antineutrino oscillations caused by strong magnetic fields in dense matter. With the strong magnetic fields and large neutrino magnetic moments, Majorana neutrinos can reach flavor equilibrium. We find that the flavor equilibrati
Recently the new model for the generation of strong large scale magnetic fields in neutron stars, driven by the parity violating interaction, was proposed. In this model, the magnetic field instability results from the modification of the chiral magn
We study the weak interaction processes taking place within a combustion flame that converts dense hadronic matter into quark matter in a compact star. Using the Boltzmann equation we follow the evolution of a small element of just deconfined quark m
We study the surface tension of hot, highly magnetized three flavor quark matter droplets, focusing specifically on the thermodynamic conditions prevailing in neutron stars, hot lepton rich protoneutron stars and neutron star mergers. We explore the
We calculate the dimensionless Fermi liquid parameters (FLPs), $F_{0,1}^{sym}$ and $F_{0,1}^{asym}$, for spin asymmetric dense quark matter. In general, the FLPs are infrared divergent due to the exchange of massless gluons. To remove such divergence