ترغب بنشر مسار تعليمي؟ اضغط هنا

Momentum mapping of continuum electron wave packet interference

58   0   0.0 ( 0 )
 نشر من قبل Weifeng Yang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the two-dimensional photoelectrons momentum distribution of Ar atom ionized by midinfrared laser pulses and mainly concentrate on the energy range below 2Up. By using a generalized quantum trajectory Monte Carlo (GQTMC) simulation and comparing with the numerical solution of time-dependent Schrodinger equation (TDSE), we show that in the deep tunneling regime, the rescattered electron trajectories plays unimportant role and the interplay between the intracycle and inter-cycle results in a ring-like interference pattern. The ring-like interference pattern will mask the holographic interference structure in the low longitudinal momentum region. When the nonadiabatic tunneling contributes significantly to ionization, i.e., the Keldysh parameter 1, the contribution of the rescattered electron trajectories become large, thus holographic interference pattern can be clearly observed. Our results help paving the way for gaining physical insight into ultrafast electron dynamic process with attosecond temporal resolution.

قيم البحث

اقرأ أيضاً

We investigate theoretically electron dynamics under a VUV attosecond pulse train which has a controlled phase delay with respect to an additional strong infrared laser field. Using the strong field approximation and the fact that the attosecond puls e is short compared to the excited electron dynamics, we arrive at a minimal analytical model for the kinetic energy distribution of the electron as well as the photon absorption probability as a function of the phase delay between the fields. We analyze the dynamics in terms of electron wave packet replicas created by the attosecond pulses. The absorption probability shows strong modulations as a function of the phase delay for VUV photons of energy comparable to the binding energy of the electron, while for higher photon energies the absorption probability does not depend on the delay, in line with the experimental observations for helium and argon, respectively.
The concerted motion of two or more bound electrons governs atomic and molecular non-equilibrium processes and chemical reactions. It is thus a long-standing scientific dream to measure the dynamics of two bound correlated electrons in the quantum re gime. Quantum wave packets were previously observed for single-active electrons on their natural attosecond timescales. However, at least two active electrons and a nucleus are required to address the quantum three-body problem. This situation is realized in the helium atom, but direct time-resolved observation of two-electron wave-packet motion remained an unaccomplished challenge. Here, we measure a 1.2-femtosecond quantum beating among low-lying doubly-excited states in helium to evidence a correlated two-electron wave packet. Our experimental method combines attosecond transient-absorption spectroscopy at unprecedented high spectral resolution (20 meV near 60 eV) with an intensity-tuneable visible laser field to couple the quantum states from the perturbative to the strong-coupling regime. This multi-dimensional transient-coupling scheme reveals an inversion of the characteristic Fano line shapes for a range of doubly-excited states. Employing Fano-type autoionization as a natural quantum interferometer, a dynamical phase shift by laser coupling to the N=2 continuum is postulated and experimentally quantified. This phase maps a transition from effectively single-active-electron to two-electron dynamics as the electron-electron interaction increases in lower-lying quantum states. In the future, such experiments will provide benchmark data for testing dynamical few-body quantum theory. They will boost our understanding of chemically and biologically important metastable electronic transition states and their dynamics on attosecond time scales.
By viewing the electron as a wavepacket in the positive energy spectrum of the Dirac equation, we are able to achieve a much clearer understanding of its behavior under weak electromagnetic fields. The intrinsic spin magnetic moment is found to be es tablished from the self-rotation of the wavepacket. A non-canonical structure is also exhibited in the equations of motion due to non- Abelian geometric phases of the Dirac spinors. The wavepacket energy can be expressed simply in terms of the kinetic, electrostatic, and Zeeman terms only. This can be transformed into an effective quantum Hamiltonian by a novel scheme, and reproduces the Pauli Hamiltonian with all-order relativistic corrections.
We consider semiclassical higher-order wave packet solutions of the Schrodinger equation with phase vortices. The vortex line is aligned with the propagation direction, and the wave packet carries a well-defined orbital angular momentum (OAM) $hbar l $ ($l$ is the vortex strength) along its main linear momentum. The probability current coils around momentum in such OAM states of electrons. In an electric field, these states evolve like massless particles with spin $l$. The magnetic-monopole Berry curvature appears in momentum space, which results in a spin-orbit-type interaction and a Berry/Magnus transverse force acting on the wave packet. This brings about the OAM Hall effect. In a magnetic field, there is a Zeeman interaction, which, can lead to more complicated dynamics.
We produce oriented rotational wave packets in CO and measure their characteristics via high harmonic generation. The wavepacket is created using an intense, femtosecond laser pulse and its second harmonic. A delayed 800 nm pulse probes the wave pack et, generating even-order high harmonics that arise from the broken symmetry induced by the orientation dynamics. The even-order harmonic radiation that we measure appears on a zero background, enabling us to accurately follow the temporal evolution of the wave packet. Our measurements reveal that, for the conditions optimum for harmonic generation, the orientation is produced by preferential ionization which depletes the sample of molecules of one orientation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا