ﻻ يوجد ملخص باللغة العربية
We produce oriented rotational wave packets in CO and measure their characteristics via high harmonic generation. The wavepacket is created using an intense, femtosecond laser pulse and its second harmonic. A delayed 800 nm pulse probes the wave packet, generating even-order high harmonics that arise from the broken symmetry induced by the orientation dynamics. The even-order harmonic radiation that we measure appears on a zero background, enabling us to accurately follow the temporal evolution of the wave packet. Our measurements reveal that, for the conditions optimum for harmonic generation, the orientation is produced by preferential ionization which depletes the sample of molecules of one orientation.
The development of alternative platforms for computing has been a longstanding goal for physics, and represents a particularly pressing concern as conventional transistors approach the limit of miniaturization. A potential alternatice paradigm is tha
This paper has been withdrawn by the authors because the wave packet propagation used in the ion-dynamics calculation did not allow for electron-nuclei correlation. Hence, the conclusion that the ion-dynamics model is not in agreement with experiment is not substantiated.
We observe the generation of high harmonics in the plane perpendicular to the driving laser polarization and show that these are driven by the spin-orbit interaction. Using R-Matrix with time-dependence theory, we demonstrate that for certain initial
We investigate theoretically electron dynamics under a VUV attosecond pulse train which has a controlled phase delay with respect to an additional strong infrared laser field. Using the strong field approximation and the fact that the attosecond puls
Using dynamical Hartree-Fock mean-field theory, we study the high-harmonic generation (HHG) in the fullerene molecules C$_{60}$ and C$_{70}$ under strong pump wave driving. We consider a strong-field regime and show that the output harmonic radiation