ترغب بنشر مسار تعليمي؟ اضغط هنا

Oriented rotational wave-packet dynamics studies via high harmonic generation

557   0   0.0 ( 0 )
 نشر من قبل Eugene Frumker
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We produce oriented rotational wave packets in CO and measure their characteristics via high harmonic generation. The wavepacket is created using an intense, femtosecond laser pulse and its second harmonic. A delayed 800 nm pulse probes the wave packet, generating even-order high harmonics that arise from the broken symmetry induced by the orientation dynamics. The even-order harmonic radiation that we measure appears on a zero background, enabling us to accurately follow the temporal evolution of the wave packet. Our measurements reveal that, for the conditions optimum for harmonic generation, the orientation is produced by preferential ionization which depletes the sample of molecules of one orientation.



قيم البحث

اقرأ أيضاً

The development of alternative platforms for computing has been a longstanding goal for physics, and represents a particularly pressing concern as conventional transistors approach the limit of miniaturization. A potential alternatice paradigm is tha t of reservoir computing, which leverages unknown, but highly non-linear transformations of input-data to perform computations. This has the advantage that many physical systems exhibit precisely the type of non-linear input-output relationships necessary for them to function as reservoirs. Consequently, the quantum effects which obstruct the further development of silicon electronics become an advantage for a reservoir computer. Here we demonstrate that even the most basic constituents of matter - atoms - can act as a reservoir for optical computers, thanks to the phenomenon of High Harmonic Generation (HHG). A prototype single-atom computer for classification problems is proposed, where parameters of the classification model are mapped to optical elements. We numerically demonstrate that this `all-optical computer can successfully classify data with an accuracy that is strongly dependent on dynamical non-linearities. This may pave the way for the development of petahertz information processing platforms.
This paper has been withdrawn by the authors because the wave packet propagation used in the ion-dynamics calculation did not allow for electron-nuclei correlation. Hence, the conclusion that the ion-dynamics model is not in agreement with experiment is not substantiated.
We observe the generation of high harmonics in the plane perpendicular to the driving laser polarization and show that these are driven by the spin-orbit interaction. Using R-Matrix with time-dependence theory, we demonstrate that for certain initial states either circularly- or linearly- polarized harmonics arise via well-known selection rules between atomic states controlled by the spin-orbit interaction. Finally, we elucidate the connection between the observed harmonics and the phase of the intial state.
We investigate theoretically electron dynamics under a VUV attosecond pulse train which has a controlled phase delay with respect to an additional strong infrared laser field. Using the strong field approximation and the fact that the attosecond puls e is short compared to the excited electron dynamics, we arrive at a minimal analytical model for the kinetic energy distribution of the electron as well as the photon absorption probability as a function of the phase delay between the fields. We analyze the dynamics in terms of electron wave packet replicas created by the attosecond pulses. The absorption probability shows strong modulations as a function of the phase delay for VUV photons of energy comparable to the binding energy of the electron, while for higher photon energies the absorption probability does not depend on the delay, in line with the experimental observations for helium and argon, respectively.
Using dynamical Hartree-Fock mean-field theory, we study the high-harmonic generation (HHG) in the fullerene molecules C$_{60}$ and C$_{70}$ under strong pump wave driving. We consider a strong-field regime and show that the output harmonic radiation exhibits multiple plateaus, whose borders are defined by the molecular excitonic lines and cutoff energies within each plateau scale linearly with the field strength amplitude. In contrast to atomic cases for the fullerene molecule, with the increase of the pump wave photon energy the cutoff harmonic energy is increased. We also show that with the increase of the electron-electron interaction energy overall the HHG rate is suppressed. We demonstrate that the C$_{70}$ molecule shows richer HHG spectra and a stronger high-harmonic intensity than the C$_{60}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا