ﻻ يوجد ملخص باللغة العربية
An innovative detector system called Horizon-T is constructed to study Extensive Air Showers (EAS) in the energy range above 10^16 eV coming from a wide range of zenith angles (0o - 85o). The system is located at Tien Shan high-altitude Science Station of Lebedev Physical Institute of the Russian Academy of Sciences at approximately 3340 meters above the sea level. The detector consists of eight charged particle detection points separated by the distance up to one kilometer as well as optical detector to view the Vavilov-Cherenkov light from the EAS. Each detector connects to the Data Acquisition system via cables. The calibration of the time delay for each cable and the signal attenuation is provided in this article.
The ability to extract the pulse width and translate it into the actual disk width of the Extensive Air Showers (EAS) is a hard one requiring accurate knowledge of the system performance. For that, the analysis for the cable calibration for Horizon-1
Horizon-T, a modern Extensive Air Showers (EAS) detector system, is constructed at Tien Shan high-altitude Science Station of Lebedev Physical Institute of the Russian Academy of Sciences at approximately 3340 meters above the sea level in order to s
Horizon-T is an innovative detector system constructed to study Extensive Air Showers (EAS) in the energy range above 10^16 eV coming from a wide range of zenith angles (0 - 85 degrees). The system is located at Tien Shan high-altitude Science Statio
In March of 2018, after the completion of the Physics Run 2, an upgrade has been installed at an innovative detector system Horizon-T, with the upgraded version now called Horizon-10T. It was constructed to study Extensive Air Showers (EAS) in the en
In calorimetric neutrino mass experiments, where the shape of a beta decay spectrum has to be precisely measured, the understanding of the detector response function is a fundamental issue. In the MIBETA neutrino mass experiment, the X-ray lines meas