ترغب بنشر مسار تعليمي؟ اضغط هنا

Ghost features in Doppler-broadened spectra of rovibrational transitions in trapped HD$^+$ ions

253   0   0.0 ( 0 )
 نشر من قبل Sayan Patra
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Doppler broadening plays an important role in laser rovibrational spectroscopy of trapped deuterated molecular hydrogen ions (HD$^+$), even at the millikelvin temperatures achieved through sympathetic cooling by laser-cooled beryllium ions. Recently, Biesheuvel textit{et al.} cite{Biesheuvel2016} presented a theoretical lineshape model for such transitions which not only considers linestrengths and Doppler broadening, but also the finite sample size and population redistribution by blackbody radiation, which are important in view of the long storage and probe times achievable in ion traps. Here, we employ the rate equation model developed by Biesheuvel textit{et al.} to theoretically study the Doppler-broadened hyperfine structure of the $(v,L):(0,3)rightarrow(4,2)$ rovibrational transition in HD$^+$ at 1442~nm. We observe prominent yet hitherto unrecognized ghost features in the simulated spectrum, whose positions depend on the Doppler width, transition rates, and saturation levels of the hyperfine components addressed by the laser. We explain the origin and behavior of such features, and we provide a simple quantitative guideline to assess whether ghost features may appear. As such ghost features may be common to saturated Doppler-broadened spectra of rotational and vibrational transitions in trapped ions composed of partly overlapping lines, our work illustrates the necessity to use lineshape models that take into account all the relevant physics.



قيم البحث

اقرأ أيضاً

We present a novel method for engineering an optical clock transition that is robust against external field fluctuations and is able to overcome limits resulting from field inhomogeneities. The technique is based on the application of continuous driv ing fields to form a pair of dressed states essentially free of all relevant shifts. Specifically, the clock transition is robust to magnetic shifts, quadrupole and other tensor shifts, and amplitude fluctuations of the driving fields. The scheme is applicable to either a single ion or an ensemble of ions, and is relevant for several types of ions, such as $^{40}mathrm{Ca}^{+}$, $^{88}mathrm{Sr}^{+}$, $^{138}mathrm{Ba}^{+}$ and $^{176}mathrm{Lu}^{+}$. Taking a spherically symmetric Coulomb crystal formed by 400 $^{40}mathrm{Ca}^{+}$ ions as an example, we show through numerical simulations that the inhomogeneous linewidth of tens of Hertz in such a crystal together with linear Zeeman shifts of order 10~MHz are reduced to form a linewidth of around 1~Hz. We estimate a two-order-of-magnitude reduction in averaging time compared to state-of-the art single ion frequency references, assuming a probe laser fractional instability of $10^{-15}$. Furthermore, a statistical uncertainty reaching $2.9times 10^{-16}$ in 1~s is estimated for a cascaded clock scheme in which the dynamically decoupled Coulomb crystal clock stabilizes the interrogation laser for an $^{27}mathrm{Al}^{+}$ clock.
We study the feasibility of nearly-degenerate two-photon rovibrational spectroscopy in ensembles of trapped, sympathetically cooled hydrogen molecular ions using a resonance-enhanced multiphoton dissociation (REMPD) scheme. Taking advantage of quasi- coincidences in the rovibrational spectrum, the excitation lasers are tuned close to an intermediate level to resonantly enhance two-photon absorption. Realistic simulations of the REMPD signal are obtained using a four-level model that takes into account saturation effects, ion trajectories, laser frequency noise and redistribution of population by blackbody radiation. We show that the use of counterpropagating laser beams enables optical excitation in an effective Lamb-Dicke regime. Sub-Doppler lines having widths in the 100 Hz range can be observed with good signal-to-noise ratio for an optimal choice of laser detunings. Our results indicate the feasibility of molecular spectroscopy at the $10^{-14}$ accuracy level for improved tests of molecular QED, a new determination of the proton-to-electron mass ratio, and studies of the time (in)dependence of the latter.
We describe a simple approach to the problem of incorporating the response time of an atom or ion being Doppler-cooled into the theory of the cooling process. The system being cooled does not in general respond instantly to the changing laser frequen cies it experiences in its rest frame, and this dynamic effect can affect significantly the temperatures attainable. It is particularly important for trapped ions when there is a slow decay out of the cooling cycle requiring the use of a repumping beam. We treat the cases of trapped ions with two and three internal states, then apply the theory to $^{40}{rm Ca}^+$. For this ion experimental data exist showing the ion to be cold under conditions for which heating is predicted if the dynamic effect is neglected. The present theory accounts for the observed behaviour.
121 - J.C.J. Koelemeij 2011
A calculation of dynamic polarizabilities of rovibrational states with vibrational quantum number $v=0-7$ and rotational quantum number $J=0,1$ in the 1s$sigma_g$ ground-state potential of HD$^+$ is presented. Polarizability contributions by transiti ons involving other 1s$sigma_g$ rovibrational states are explicitly calculated, whereas contributions by electronic transitions are treated quasi-statically and partially derived from existing data [R.E. Moss and L. Valenzano, textit{Molec. Phys.}, 2002, textbf{100}, 1527]. Our model is valid for wavelengths $>4~mu$m and is used to to assess level shifts due to the blackbody radiation (BBR) electric field encountered in experimental high-resolution laser spectroscopy of trapped HD$^+$ ions. Polarizabilities of 1s$sigma_g$ rovibrational states obtained here agree with available existing accurate textit{ab initio} results. It is shown that the Stark effect due to BBR is dynamic and cannot be treated quasi-statically, as is often done in the case of atomic ions. Furthermore it is pointed out that the dynamic Stark shifts have tensorial character and depend strongly on the polarization state of the electric field. Numerical results of BBR-induced Stark shifts are presented, showing that Lamb-Dicke spectroscopy of narrow vibrational optical lines ($sim 10$ Hz natural linewidth) in HD$^+$ will become affected by BBR shifts only at the $10^{-16}$ level.
Traditionally, measuring the center-of-mass (c.m.) velocity of an atomic ensemble relies on measuring the Doppler shift of the absorption spectrum of single atoms in the ensemble. Mapping out the velocity distribution of the ensemble is indispensable when determining the c.m. velocity using this technique. As a result, highly sensitive measurements require preparation of an ensemble with a narrow Doppler width. Here, we use a dispersive measurement of light passing through a moving room temperature atomic vapor cell to determine the velocity of the cell in a single shot with a short-term sensitivity of 5.5 $mu$m s$^{-1}$ Hz$^{-1/2}$. The dispersion of the medium is enhanced by creating quantum interference through an auxiliary transition for the probe light under electromagnetically induced transparency condition. In contrast to measurement of single atoms, this method is based on the collective motion of atoms and can sense the c.m. velocity of an ensemble without knowing its velocity distribution. Our results improve the previous measurements by 3 orders of magnitude and can be used to design a compact motional sensor based on thermal atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا