ﻻ يوجد ملخص باللغة العربية
Time-resolved femtosecond x-ray diffraction patterns from laser-excited molecular iodine are used to create a movie of intramolecular motion with time and space resolution of $30~$fs and $0.3$ AA . The high spatial fidelity is due to interference between the moving excitation and the static initial charge distribution. This x-ray interference has not been employed to image internal motion in molecules before. The initial state is used as the local oscillator for heterodyne amplification of the excited charge distribution to retrieve real-space movies of atomic motion on AA ngstrom and femtosecond scales. Coherent vibrational motion and dispersion, dissociation, and rotational dephasing are all clearly visible in the data, thereby demonstrating the stunning sensitivity of heterodyne methods.
The capability of generating two intense, femtosecond x-ray pulses with controlled time delay opens the possibility of performing time-resolved experiments for x-ray induced phenomena. We have applied this capability to study the photoinduced dynamic
We demonstrate how to use feedback to control the internal states of trapped coherent ensembles of two-level atoms, and to protect a superposition state against the decoherence induced by a collective noise. Our feedback scheme is based on weak optic
Atoms trapped in the evanescent field around a nanofiber experience strong coupling to the light guided in the fiber mode. However, due to the intrinsically strong positional dependence of the coupling, thermal motion of the ensemble limits the use o
Short wavelength Free-Electron Lasers (FELs) are the newest light sources available to scientists to probe a wide range of phenomena, with chemical, physical and biological applications, using soft and hard X-rays. These sources include the currently
The counting and control of optical cycles of light has become common with modelocked laser frequency combs. But even with advances in laser technology, modelocked laser combs remain bulk-component devices that are hand-assembled. In contrast, a freq