ﻻ يوجد ملخص باللغة العربية
To fully exploit the scientific potential of the Fermi mission, we initiated the F-GAMMA program. Between 2007 and 2015 it was the prime provider of complementary multi-frequency monitoring in the radio regime. We quantify the radio variability of gamma-ray blazars. We investigate its dependence on source class and examine whether the radio variability is related to the gamma-ray loudness. Finally, we assess the validity of a putative correlation between the two bands. The F-GAMMA monitored monthly a sample of about 60 sources at up to twelve radio frequencies between 2.64 and 228.39 GHz. We perform a time series analysis on the first 2.5-year dataset to obtain variability parameters. A maximum likelihood analysis is used to assess the significance of a correlation between radio and gamma-ray fluxes. We present light curves and spectra (coherent within ten days) obtained with the Effelsberg 100-m and IRAM 30-m telescopes. All sources are variable across all frequency bands with amplitudes increasing with frequency up to rest frame frequencies of around 60 - 80 GHz as expected by shock-in-jet models. Compared to FSRQs, BL Lacs show systematically lower variability amplitudes, brightness temperatures and Doppler factors at lower frequencies, while the difference vanishes towards higher ones. The time scales appear similar for the two classes. The distribution of spectral indices appears flatter or more inverted at higher frequencies for BL Lacs. Evolving synchrotron self-absorbed components can naturally account for the observed spectral variability. We find that the Fermi-detected sources show larger variability amplitudes as well as brightness temperatures and Doppler factors, than non-detected ones. Flux densities at 86.2 and 142.3 GHz correlate with 1 GeV fluxes at a significance level better than 3sigma, implying that gamma rays are produced very close to the mm-band emission region.
The Galactic bulge region is a rich host of variable high-energy point sources. Since 2005, February 17 we are monitoring the source activity in this region about every three days with INTEGRAL. Thanks to the large field of view, the imaging capabili
The Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope provides an unprecedented opportunity to study gamma-ray blazars. To capitalize on this opportunity, beginning in late 2007, about a year before the start of LAT science operat
We present a detailed statistical analysis of the correlation between radio and gamma-ray emission of the Active Galactic Nuclei (AGN) detected by Fermi during its first year of operation, with the largest datasets ever used for this purpose. We use
We describe the POLAMI program for the monitoring of all four Stokes parameters of a sample of bright radio-loud active galactic nuclei with the IRAM 30m telescope at 3.5 and 1.3mm. The program started in October 2006 and accumulated, until August 20
Intergalactic magnetic fields (IGMF) can cause the appearance of halos around the gamma-ray images of distant objects because an electromagnetic cascade initiated by a high-energy gamma-ray interaction with the photon background is broadened by magne