ترغب بنشر مسار تعليمي؟ اضغط هنا

The F-GAMMA program: Multi-frequency study of Active Galactic Nuclei in the Fermi era. Program description and the first 2.5 years of monitoring

62   0   0.0 ( 0 )
 نشر من قبل Emmanouil Angelakis
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To fully exploit the scientific potential of the Fermi mission, we initiated the F-GAMMA program. Between 2007 and 2015 it was the prime provider of complementary multi-frequency monitoring in the radio regime. We quantify the radio variability of gamma-ray blazars. We investigate its dependence on source class and examine whether the radio variability is related to the gamma-ray loudness. Finally, we assess the validity of a putative correlation between the two bands. The F-GAMMA monitored monthly a sample of about 60 sources at up to twelve radio frequencies between 2.64 and 228.39 GHz. We perform a time series analysis on the first 2.5-year dataset to obtain variability parameters. A maximum likelihood analysis is used to assess the significance of a correlation between radio and gamma-ray fluxes. We present light curves and spectra (coherent within ten days) obtained with the Effelsberg 100-m and IRAM 30-m telescopes. All sources are variable across all frequency bands with amplitudes increasing with frequency up to rest frame frequencies of around 60 - 80 GHz as expected by shock-in-jet models. Compared to FSRQs, BL Lacs show systematically lower variability amplitudes, brightness temperatures and Doppler factors at lower frequencies, while the difference vanishes towards higher ones. The time scales appear similar for the two classes. The distribution of spectral indices appears flatter or more inverted at higher frequencies for BL Lacs. Evolving synchrotron self-absorbed components can naturally account for the observed spectral variability. We find that the Fermi-detected sources show larger variability amplitudes as well as brightness temperatures and Doppler factors, than non-detected ones. Flux densities at 86.2 and 142.3 GHz correlate with 1 GeV fluxes at a significance level better than 3sigma, implying that gamma rays are produced very close to the mm-band emission region.



قيم البحث

اقرأ أيضاً

The Galactic bulge region is a rich host of variable high-energy point sources. Since 2005, February 17 we are monitoring the source activity in this region about every three days with INTEGRAL. Thanks to the large field of view, the imaging capabili ties and the sensitivity at hard X-rays, we are able to present for the first time a detailed homogeneous (hard) X-ray view of a sample of 76 sources in the Galactic bulge region. We describe the successful monitoring program and show the first results for a period of about one and a half year. We focus on the short (hour), medium (month) and long-term (year) variability in the 20-60 keV and 60-150 keV bands. When available, we discuss the simultaneous observations in the 3-10 keV and 10-25 keV bands. Per visibility season we detect 32/33 sources in the 20-60 keV band and 8/9 sources in the 60-150 keV band. On average, we find per visibility season one active bright (>~100 mCrab, 20-60 keV) black-hole candidate X-ray transient and three active weaker (<~25 mCrab, 20-60 keV) neutron star X-ray transients. Most of the time a clear anti-correlation can be seen between the soft and hard X-ray emission in some of the X-ray bursters. Hard X-ray flares or outbursts in X-ray bursters, which have a duration of the order of weeks, are accompanied by soft X-ray drops. On the other hand, hard X-ray drops can be accompanied by soft X-ray flares/outbursts. We found a number of new sources, IGR J17354-3255, IGR 17453-2853, IGR J17454-2703, IGR J17456-2901b, IGR J17536-2339, and IGR J17541-2252. We report here on some of the high-energy properties of these sources. The high-energy light curves of all the sources in the field of view, and the high-energy images of the region, are made available through the WWW at http://isdc.unige.ch/Science/BULGE/.
The Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope provides an unprecedented opportunity to study gamma-ray blazars. To capitalize on this opportunity, beginning in late 2007, about a year before the start of LAT science operat ions, we began a large-scale, fast-cadence 15 GHz radio monitoring program with the 40-m telescope at the Owens Valley Radio Observatory (OVRO). This program began with the 1158 northern (declination>-20 deg) sources from the Candidate Gamma-ray Blazar Survey (CGRaBS) and now encompasses over 1500 sources, each observed twice per week with a ~4 mJy (minimum) and 3% (typical) uncertainty. Here, we describe this monitoring program and our methods, and present radio light curves from the first two years (2008 and 2009). As a first application, we combine these data with a novel measure of light curve variability amplitude, the intrinsic modulation index, through a likelihood analysis to examine the variability properties of subpopulations of our sample. We demonstrate that, with high significance (7-sigma), gamma-ray-loud blazars detected by the LAT during its first 11 months of operation vary with about a factor of two greater amplitude than do the gamma-ray-quiet blazars in our sample. We also find a significant (3-sigma) difference between variability amplitude in BL Lacertae objects and flat-spectrum radio quasars (FSRQs), with the former exhibiting larger variability amplitudes. Finally, low-redshift (z<1) FSRQs are found to vary more strongly than high-redshift FSRQs, with 3-sigma significance. These findings represent an important step toward understanding why some blazars emit gamma-rays while others, with apparently similar properties, remain silent.
We present a detailed statistical analysis of the correlation between radio and gamma-ray emission of the Active Galactic Nuclei (AGN) detected by Fermi during its first year of operation, with the largest datasets ever used for this purpose. We use both archival interferometric 8.4 GHz data (from the VLA and ATCA, for the full sample of 599 sources) and concurrent single-dish 15 GHz measurements from the Owens Valley Radio Observatory (OVRO, for a sub sample of 199 objects). Our unprecedentedly large sample permits us to assess with high accuracy the statistical significance of the correlation, using a surrogate-data method designed to simultaneously account for common-distance bias and the effect of a limited dynamical range in the observed quantities. We find that the statistical significance of a positive correlation between the cm radio and the broad band (E>100 MeV) gamma-ray energy flux is very high for the whole AGN sample, with a probability <1e-7 for the correlation appearing by chance. Using the OVRO data, we find that concurrent data improve the significance of the correlation from 1.6e-6 to 9.0e-8. Our large sample size allows us to study the dependence of correlation strength and significance on specific source types and gamma-ray energy band. We find that the correlation is very significant (chance probability <1e-7) for both FSRQs and BL Lacs separately; a dependence of the correlation strength on the considered gamma-ray energy band is also present, but additional data will be necessary to constrain its significance.
We describe the POLAMI program for the monitoring of all four Stokes parameters of a sample of bright radio-loud active galactic nuclei with the IRAM 30m telescope at 3.5 and 1.3mm. The program started in October 2006 and accumulated, until August 20 14, 2300 observations at 3.5mm, achieving a median time sampling interval of 22 days for the sample of 37 sources. This first paper explains the source selection, mostly blazars, the observing strategy and data calibration, and gives the details of the instrumental polarisation corrections. The sensitivity (1sigma) reached at 3.5mm is 0.5% (linear polarisation degree), 4.7 deg. (polarisation angle), and 0.23% (circular polarisation), while the corresponding values at 1.3mm are 1.7%, 9.9 deg., and 0.72%, respectively. The data quality is demonstrated by the time sequences of our calibrators Mars and Uranus. For the quasar 3C286, widely used as a linear polarisation calibrator, we give improved estimates of its linear polarisation, and show for the first time occasional detections of its weak circular polarisation, which suggests a small level of variability of the source at millimeter wavelengths.
135 - Shinichiro Ando 2010
Intergalactic magnetic fields (IGMF) can cause the appearance of halos around the gamma-ray images of distant objects because an electromagnetic cascade initiated by a high-energy gamma-ray interaction with the photon background is broadened by magne tic deflections. We report evidence of such gamma-ray halos in the stacked images of the 170 brightest active galactic nuclei (AGN) in the 11-month source catalog of the Fermi Gamma-Ray Space Telescope. Excess over point spread function in the surface brightness profile is statistically significant at 3.5sigma (99.95% confidence level), for the nearby, hard population of AGN. The halo size and brightness are consistent with IGMF, B_{IGMF} ~ 10^{-15} G. The knowledge of IGMF will facilitate the future gamma-ray and charged-particle astronomy. Furthermore, since IGMF are likely to originate from the primordial seed fields created shortly after the Big Bang, this potentially opens a new window on the origin of cosmological magnetic fields, inflation, and the phase transitions in the early Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا