ﻻ يوجد ملخص باللغة العربية
Intergalactic magnetic fields (IGMF) can cause the appearance of halos around the gamma-ray images of distant objects because an electromagnetic cascade initiated by a high-energy gamma-ray interaction with the photon background is broadened by magnetic deflections. We report evidence of such gamma-ray halos in the stacked images of the 170 brightest active galactic nuclei (AGN) in the 11-month source catalog of the Fermi Gamma-Ray Space Telescope. Excess over point spread function in the surface brightness profile is statistically significant at 3.5sigma (99.95% confidence level), for the nearby, hard population of AGN. The halo size and brightness are consistent with IGMF, B_{IGMF} ~ 10^{-15} G. The knowledge of IGMF will facilitate the future gamma-ray and charged-particle astronomy. Furthermore, since IGMF are likely to originate from the primordial seed fields created shortly after the Big Bang, this potentially opens a new window on the origin of cosmological magnetic fields, inflation, and the phase transitions in the early Universe.
Active galactic nuclei (AGN) with jets seen at small viewing angles are the most luminous and abundant objects in the $gamma$-ray sky. AGN with jets misaligned along the line-of-sight appear fainter in the sky, but are more numerous than the brighter
The high-energy universe has revealed that energetic particles are ubiquitous in the cosmos and play a vital role in the cultivation of cosmic environments on all scales. Though they play a key role in cultivating the cosmological environment and/or
We present estimates of magnetic field in a number of AGNs from the Spectropolarimetric atlas of Smith, Young & Robinson (2002) from the observed degrees of linear polarization and the positional angles of spectral lines (H-alpha) (broad line regions
Active Galactic Nuclei can be copious extragalactic emitters of MeV-GeV-TeV gamma rays, a phenomenon linked to the presence of relativistic jets powered by a super-massive black hole in the center of the host galaxy. Most of gamma-ray emitting active
Using data from the HAWC gamma-ray Telescope, we have studied a sample of 37 millisecond pulsars (MSPs), selected for their spindown power and proximity. From among these MSP, we have identified four which favor the presence of very high-energy gamma