ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding Predictability and Exploration in Human Mobility

213   0   0.0 ( 0 )
 نشر من قبل Andrea Cuttone
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

Predictive models for human mobility have important applications in many fields such as traffic control, ubiquitous computing and contextual advertisement. The predictive performance of models in literature varies quite broadly, from as high as 93% to as low as under 40%. In this work we investigate which factors influence the accuracy of next-place prediction, using a high-precision location dataset of more than 400 users for periods between 3 months and one year. We show that it is easier to achieve high accuracy when predicting the time-bin location than when predicting the next place. Moreover we demonstrate how the temporal and spatial resolution of the data can have strong influence on the accuracy of prediction. Finally we uncover that the exploration of new locations is an important factor in human mobility, and we measure that on average 20-25% of transitions are to new places, and approx. 70% of locations are visited only once. We discuss how these mechanisms are important factors limiting our ability to predict human mobility.



قيم البحث

اقرأ أيضاً

Social structures influence a variety of human behaviors including mobility patterns, but the extent to which one individuals movements can predict anothers remains an open question. Further, latent information about an individuals mobility can be pr esent in the mobility patterns of both social and non-social ties, a distinction that has not yet been addressed. Here we develop a colocation network to distinguish the mobility patterns of an egos social ties from those of non-social colocators, individuals not socially connected to the ego but who nevertheless arrive at a location at the same time as the ego. We apply entropy and predictability measures to analyse and bound the predictive information of an individuals mobility pattern and the flow of that information from their top social ties and from their non-social colocators. While social ties generically provide more information than non-social colocators, we find that significant information is present in the aggregation of non-social colocators: 3-7 colocators can provide as much predictive information as the top social tie, and colocators can replace up to 85% of the predictive information about an ego, compared with social ties that can replace up to 94% of the egos predictability. The presence of predictive information among non-social colocators raises privacy concerns: given the increasing availability of real-time mobility traces from smartphones, individuals sharing data may be providing actionable information not just about their own movements but the movements of others whose data are absent, both known and unknown individuals.
238 - M.C. Gonzalez , C.A. Hidalgo , 2008
Despite their importance for urban planning, traffic forecasting, and the spread of biological and mobile viruses, our understanding of the basic laws governing human motion remains limited thanks to the lack of tools to monitor the time resolved loc ation of individuals. Here we study the trajectory of 100,000 anonymized mobile phone users whose position is tracked for a six month period. We find that in contrast with the random trajectories predicted by the prevailing Levy flight and random walk models, human trajectories show a high degree of temporal and spatial regularity, each individual being characterized by a time independent characteristic length scale and a significant probability to return to a few highly frequented locations. After correcting for differences in travel distances and the inherent anisotropy of each trajectory, the individual travel patterns collapse into a single spatial probability distribution, indicating that despite the diversity of their travel history, humans follow simple reproducible patterns. This inherent similarity in travel patterns could impact all phenomena driven by human mobility, from epidemic prevention to emergency response, urban planning and agent based modeling.
In response to the coronavirus disease 2019 (COVID-19) pandemic, governments have encouraged and ordered citizens to practice social distancing, particularly by working and studying at home. Intuitively, only a subset of people have the ability to pr actice remote work. However, there has been little research on the disparity of mobility adaptation across different income groups in US cities during the pandemic. The authors worked to fill this gap by quantifying the impacts of the pandemic on human mobility by income in Greater Houston, Texas. In this paper, we determined human mobility using pseudonymized, spatially disaggregated cell phone location data. A longitudinal study across estimated income groups was conducted by measuring the total travel distance, radius of gyration, number of visited locations, and per-trip distance in April 2020 compared to the data in a baseline. An apparent disparity in mobility was found across estimated income groups. In particular, there was a strong negative correlation ($rho$ = -0.90) between a travelers estimated income and travel distance in April. Disparities in mobility adaptability were further shown since those in higher income brackets experienced larger percentage drops in the radius of gyration and the number of distinct visited locations than did those in lower income brackets. The findings of this study suggest a need to understand the reasons behind the mobility inflexibility among low-income populations during the pandemic. The study illuminates an equity issue which may be of interest to policy makers and researchers alike in the wake of an epidemic.
We study six months of human mobility data, including WiFi and GPS traces recorded with high temporal resolution, and find that time series of WiFi scans contain a strong latent location signal. In fact, due to inherent stability and low entropy of h uman mobility, it is possible to assign location to WiFi access points based on a very small number of GPS samples and then use these access points as location beacons. Using just one GPS observation per day per person allows us to estimate the location of, and subsequently use, WiFi access points to account for 80% of mobility across a population. These results reveal a great opportunity for using ubiquitous WiFi routers for high-resolution outdoor positioning, but also significant privacy implications of such side-channel location tracking.
The information collected by mobile phone operators can be considered as the most detailed information on human mobility across a large part of the population. The study of the dynamics of human mobility using the collected geolocations of users, and applying it to predict future users locations, has been an active field of research in recent years. In this work, we study the extent to which social phenomena are reflected in mobile phone data, focusing in particular in the cases of urban commute and major sports events. We illustrate how these events are reflected in the data, and show how information about the events can be used to improve predictability in a simple model for a mobile phone users location.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا