ﻻ يوجد ملخص باللغة العربية
Predictive models for human mobility have important applications in many fields such as traffic control, ubiquitous computing and contextual advertisement. The predictive performance of models in literature varies quite broadly, from as high as 93% to as low as under 40%. In this work we investigate which factors influence the accuracy of next-place prediction, using a high-precision location dataset of more than 400 users for periods between 3 months and one year. We show that it is easier to achieve high accuracy when predicting the time-bin location than when predicting the next place. Moreover we demonstrate how the temporal and spatial resolution of the data can have strong influence on the accuracy of prediction. Finally we uncover that the exploration of new locations is an important factor in human mobility, and we measure that on average 20-25% of transitions are to new places, and approx. 70% of locations are visited only once. We discuss how these mechanisms are important factors limiting our ability to predict human mobility.
Social structures influence a variety of human behaviors including mobility patterns, but the extent to which one individuals movements can predict anothers remains an open question. Further, latent information about an individuals mobility can be pr
Despite their importance for urban planning, traffic forecasting, and the spread of biological and mobile viruses, our understanding of the basic laws governing human motion remains limited thanks to the lack of tools to monitor the time resolved loc
In response to the coronavirus disease 2019 (COVID-19) pandemic, governments have encouraged and ordered citizens to practice social distancing, particularly by working and studying at home. Intuitively, only a subset of people have the ability to pr
We study six months of human mobility data, including WiFi and GPS traces recorded with high temporal resolution, and find that time series of WiFi scans contain a strong latent location signal. In fact, due to inherent stability and low entropy of h
The information collected by mobile phone operators can be considered as the most detailed information on human mobility across a large part of the population. The study of the dynamics of human mobility using the collected geolocations of users, and