ﻻ يوجد ملخص باللغة العربية
We derive analytical expressions for the spectral moments of the dynamical response functions of the Hubbard model using the high-temperature series expansion. We consider generic dimension $d$ as well as the infinite-$d$ limit, arbitrary electron density $n$, and both finite and infinite repulsion $U$. We use moment-reconstruction methods to obtain the one-electron spectral function, the self-energy, and the optical conductivity. They are all smooth functions at high-temperature and, at large-$U$, they are featureless with characteristic widths of order the lattice hopping parameter $t$. In the infinite-$d$ limit we compare the series expansion results with accurate numerical renormalization group and interaction expansion quantum Monte-Carlo results. We find excellent agreement down to surprisingly low temperatures, throughout most of the bad-metal regime which applies for $T gtrsim (1-n)D$, the Brinkman-Rice scale. The resistivity increases linearly in $T$ at high-temperature without saturation. This results from the $1/T$ behaviour of the compressibility or kinetic energy, which play the role of the effective carrier number. In contrast, the scattering time (or diffusion constant) saturate at high-$T$. We find that $sigma(n,T) approx (1-n)sigma(n=0,T)$ to a very good approximation for all $n$, with $sigma(n=0,T)propto t/T$ at high temperatures. The saturation at small $n$ occurs due to a compensation between the density-dependence of the effective number of carriers and that of the scattering time. The $T$-dependence of the resistivity displays a knee-like feature which signals a cross-over to the intermediate-temperature regime where the diffusion constant (or scattering time) start increasing with decreasing $T$. At high-temperatures, the thermopower obeys the Heikes formula, while the Wiedemann-Franz law is violated with the Lorenz number vanishing as $1/T^2$.
One of the most straightforward ways to study thermal properties beyond linear response is to monitor the relaxation of an arbitrarily large left-right temperature gradient $T_L-T_R$. In one-dimensional systems which support ballistic thermal transpo
We study the charge conductivity of the one-dimensional repulsive Hubbard model at finite temperature using the method of dynamical quantum typicality, focusing at half filling. This numerical approach allows us to obtain current autocorrelation func
We study the spin diffusion and spin conductivity in the square lattice Hubbard model by using the finite-temperature Lanczos method. We show that the spin diffusion behaves differently from the charge diffusion and has a nonmonotonic $T$ dependence.
We study finite-temperature transport properties of the one-dimensional Hubbard model using the density matrix renormalization group. Our aim is two-fold: First, we compute both the charge and the spin current correlation function of the integrable m
A systematic diagrammatic expansion for Gutzwiller-wave functions (DE-GWF) is formulated and used for the description of superconducting (SC) ground state in the two-dimensional Hubbard model with electron-transfer amplitudes t (and t) between neares