ترغب بنشر مسار تعليمي؟ اضغط هنا

High-temperature superconductivity in the Hubbard model: Gutzwiller wave-function solution

145   0   0.0 ( 0 )
 نشر من قبل Jan Kaczmarczyk
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A systematic diagrammatic expansion for Gutzwiller-wave functions (DE-GWF) is formulated and used for the description of superconducting (SC) ground state in the two-dimensional Hubbard model with electron-transfer amplitudes t (and t) between nearest (and next-nearest) neighbors. The method is numerically very efficient and allows for a detailed analysis of the phase diagram as a function of all relevant parameters (U, delta, t) and a determination of the kinetic-energy driven pairing region. SC states appear only for substantial interactions, U/t > 3, and for not too large hole doping, delta < 0.32 for t = 0.25 t; this upper critical doping value agrees well with experiment for the cuprate high-temperature superconductors. We also obtain other important features of the SC state: (i) the SC gap at the Fermi surface resembles $d_{x^2-y^2}$-wave only around the optimal doping and the corrections to this state are shown to arise from the longer range of the pairing; (ii) the nodal Fermi velocity is almost constant as a function of doping and agrees quantitatively with the experimental results; (iii) the SC transition is driven by the kinetic-energy lowering for low doping and strong interactions.



قيم البحث

اقرأ أيضاً

A systematic diagrammatic expansion for Gutzwiller-wave functions (DE-GWF) proposed very recently is used for the description of superconducting (SC) ground state in the two-dimensional square-lattice $t$-$J$ model with the hopping electron amplitude s $t$ (and $t$) between nearest (and next-nearest) neighbors. On the example of the SC state analysis we provide a detailed comparison of the method results with other approaches. Namely: (i) the truncated DE-GWF method reproduces the variational Monte Carlo (VMC) results; (ii) in the lowest (zeroth) order of the expansion the method can reproduce the analytical results of the standard Gutzwiller approximation (GA), as well as of the recently proposed grand-canonical Gutzwiller approximation (GCGA). We obtain important features of the SC state. First, the SC gap at the Fermi surface resembles a $d_{x^2-y^2}$-wave only for optimally- and overdoped system, being diminished in the antinodal regions for the underdoped case in a qualitative agreement with experiment. Corrections to the gap structure are shown to arise from the longer range of the real-space pairing. Second, the nodal Fermi velocity is almost constant as a function of doping and agrees semi-quantitatively with experimental results. Third, we compare the doping dependence of the gap magnitude with experimental data. Fourth, we analyze the $mathbf{k}$-space properties of the model: Fermi surface topology and effective dispersion. The DE-GWF method opens up new perspectives for studying strongly-correlated systems, as: (i) it works in the thermodynamic limit, (ii) is comparable in accuracy to VMC, and (iii) has numerical complexity comparable to GA (i.e., it provides the results much faster than the VMC approach).
97 - B. Kyung , J.S. Landry , 2002
We show that, at weak to intermediate coupling, antiferromagnetic fluctuations enhance d-wave pairing correlations until, as one moves closer to half-filling, the antiferromagnetically-induced pseudogap begins to suppress the tendency to superconduct ivity. The accuracy of our approach is gauged by detailed comparisons with Quantum Monte Carlo simulations. The negative pressure dependence of Tc and the existence of photoemission hot spots in electron-doped cuprate superconductors find their natural explanation within this approach.
We review the Resonating Valence Bond (RVB) theory of high temperatur e superconductivity using Gutzwiller projected wave functions that incorporate strong correlations. After a general overview of the phenomenon of high temperature superconductivity , we discuss Andersons RVB picture and its implementation by renormalised mean field theory (RMFT) and variational Monte Carlo (VMC) techniques. We review RMFT and VMC results with an emphasis on recent development s in extending VMC and RMFT techniques to excited states. We compare results obtained from these methods with angle resolved photoemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM). We conclude by summarising recent successes of this approach and discuss open problems that need to be solved for a consistent and complete description of high temperature superconductivity using Gutzwiller projected wave functions.
Partially-projected Gutzwiller variational wavefunctions are used to describe the ground state of disordered interacting systems of fermions. We compare several different variational ground states with the exact ground state for disordered one-dimens ional chains, with the goal of determining a minimal set of variational parameters required to accurately describe the spatially-inhomogeneous charge densities and spin correlations. We find that, for weak and intermediate disorder, it is sufficient to include spatial variations of the charge densities in the product state alone, provided that screening of the disorder potential is accounted for. For strong disorder, this prescription is insufficient and it is necessary to include spatially inhomogeneous variational parameters as well.
We present a functional renormalization group analysis of superconductivity in the ground state of the attractive Hubbard model on a square lattice. Spontaneous symmetry breaking is treated in a purely fermionic setting via anomalous propagators and anomalous effective interactions. In addition to the anomalous interactions arising already in the reduced BCS model, effective interactions with three incoming legs and one outgoing leg (and vice versa) occur. We accomplish their integration into the usual diagrammatic formalism by introducing a Nambu matrix for the effective interactions. From a random-phase approximation generalized through use of this matrix we conclude that the impact of the 3+1 effective interactions is limited, especially considering the effective interactions important for the determination of the order parameter. The exact hierarchy of flow equations for one-particle irreducible vertex functions is truncated on the two-particle level, with higher-order self-energy corrections included in a scheme proposed by Katanin. Using a parametrization of effective interactions by patches in momentum space, the flow equations can be integrated numerically to the lowest scales without encountering divergences. Momentum-shell as well as interaction-flow cutoff functions are used, including a small external field or a large external field and a counterterm, respectively. Both approaches produce momentum-resolved order parameter values directly from the microscopic model. The size of the superconducting gap is in reasonable agreement with expectations from other studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا