ﻻ يوجد ملخص باللغة العربية
We present a geomorphologic map of Titans polar terrains. The map was generated from a combination of Cassini Synthetic Aperture Radar (SAR) and Imaging Science Subsystem imaging products, as well as altimetry, SARTopo and radargrammetry topographic datasets. In combining imagery with topographic data, our geomorphologic map reveals a stratigraphic sequence from which we infer process interactions between units. In mapping both polar regions with the same geomorphologic units, we conclude that processes that formed the terrains of the north polar region also acted to form the landscape we observe at the south. Uniform, SAR-dark plains are interpreted as sedimentary deposits, and are bounded by moderately dissected uplands. These plains contain the highest density of filled and empty lake depressions, and canyons. These units unconformably overlay a basement rock that outcrops as mountains and SAR-bright dissected terrains at various elevations across both poles. All these units are then superposed by surficial units that slope towards the seas, suggestive of subsequent overland transport of sediment. From estimates of the depths of the embedded empty depressions and canyons that drain into the seas, the SAR-dark plains must be >600 m thick in places, though the thickness may vary across the poles. At the lowest elevations of each polar region, there are large seas, which are currently liquid methane/ethane filled at the north and empty at the south. The large plains deposits and the surrounding hillslopes may represent remnant landforms that are a result of previously vast polar oceans, where larger liquid bodies may have allowed for a sustained accumulation of soluble and insoluble sediments, potentially forming layered sedimentary deposits. Coupled with vertical crustal movements, the resulting layers would be of varying solubilities and erosional resistances.
The Cassini mission offered us the opportunity to monitor the seasonal evolution of Titans atmosphere from 2004 to 2017, i.e. half a Titan year. The lower part of the stratosphere (pressures greater than 10 mbar) is a region of particular interest as
Vinyl cyanide (C$_2$H$_3$CN) is theorized to form in Titans atmosphere via high-altitude photochemistry and is of interest regarding the astrobiology of cold planetary surfaces due to its predicted ability to form cell membrane-like structures (azoto
The surface composition of Vesta, the most massive intact basaltic object in the asteroid belt, is interesting because it provides us with an insight into magmatic differentiation of planetesimals that eventually coalesced to form the terrestrial pla
The seasonal evolution of Saturns polar atmospheric temperatures and hydrocarbon composition is derived from a decade of Cassini Composite Infrared Spectrometer (CIRS) 7-16 $mu$m thermal infrared spectroscopy. We construct a near-continuous record of
The Rosetta mission provided us with detailed data of the surface of the nucleus of comet 67P/Churyumov-Gerasimenko.In order to better understand the physical processes associated with the comet activity and the surface evolution of its nucleus, we p