ﻻ يوجد ملخص باللغة العربية
The Rosetta mission provided us with detailed data of the surface of the nucleus of comet 67P/Churyumov-Gerasimenko.In order to better understand the physical processes associated with the comet activity and the surface evolution of its nucleus, we performed a detailed comparative morphometrical analysis of two depressions located in the Ash region. To detect morphological temporal changes, we compared pre- and post-perihelion high-resolution (pixel scale of 0.07-1.75 m) OSIRIS images of the two depressions. We quantified the changes using the dynamic heights and the gravitational slopes calculated from the Digital Terrain Model (DTM) of the studied area using the ArcGIS software before and after perihelion. Our comparative morphometrical analysis allowed us to detect and quantify the temporal changes that occurred in two depressions of the Ash region during the last perihelion passage. We find that the two depressions grew by several meters. The area of the smallest depression (structure I) increased by 90+/-20%, with two preferential growths: one close to the cliff associated with the apparition of new boulders at its foot, and a second one on the opposite side of the cliff. The largest depression (structure II) grew in all directions, increasing in area by 20+/-5%, and no new deposits have been detected. We interpreted these two depression changes as being driven by the sublimation of ices, which explains their global growth and which can also trigger landslides. The deposits associated with depression II reveal a stair-like topography, indicating that they have accumulated during several successive landslides from different perihelion passages. Overall, these observations bring additional evidence of complex active processes and reshaping events occurring on short timescales, such as depression growth and landslides, and on longer timescales, such as cliff retreat.
Deuterated methanol is one of the most robust windows astrochemists have on the individual chemical reactions forming deuterium-bearing molecules and the physicochemical history of the regions where they reside. The first-time detection of mono- and
Dust is an important constituent in cometary comae; its analysis is one of the major objectives of ESAs Rosetta mission to comet 67P/Churyumov-Gerasimenko (C-G). Several instruments aboard Rosetta are dedicated to studying various aspects of dust in
Comets are thought to preserve almost pristine dust particles, thus providing a unique sample of the properties of the early solar nebula. The microscopic properties of this dust played a key part in particle aggregation during the formation of the S
Comet 67P/Churyumov-Gerasimenko is the main target of ESAs Rosetta mission and will be encountered in May 2014. As the spacecraft shall be in orbit the comet nucleus before and after release of the lander {it Philae}, it is necessary necessary to kno
Molecular oxygen has been detected in the coma of comet 67P/Churyumov-Gerasimenko with abundances in the 1-10% range by the ROSINA-DFMS instrument on board the Rosetta spacecraft. Here we find that the radiolysis of icy grains in low-density environm